Тепловое реле принцип работы, виды, схема подключения, регулировка и маркировка


Содержание страницы:

Виды и конструкции тепловых реле, расчет и выбор теплового реле для защиты двигателя

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

На реле РТИ эти контакты размещены на передней панели:

NO – нормально-открытый – на индикацию;

NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

РТЛ-1007, с токовым диапазоном 1.5-2.6 А;

РТЛ-1008, токовый диапазон 2,4-4 А;

РТИ-1307, токовый диапазон 1,6. 2,5 А;

РТИ-1308, токовый диапазон 2,5. 4 А;

ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн — номинальный ток нагрузки электродвигателя, Iнэ — номинальный ток нагревательного элемента теплового реле, с — коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

где Т — температура окружающей среды, °С.

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Тепловые реле. Виды и устройство. Работа и применение

Тепловые реле являются электрическими устройствами, предотвращающими нагревание различных электрических потребителей от критических показателей температуры. При повышенной нагрузке электродвигатель расходует значительное количество электрической энергии, которая может намного превышать нормативные данные для электродвигателя.

В результате перегрузки в цепи электрического тока повышается температура, которая приводит чаще всего к неисправностям и аварии. Для исключения такой ситуации в цепи подключают вспомогательные специальные устройства, которые отключают электроэнергию при возникновении перегрузки или аварии. Такие приборы называют термореле или тепловые реле. Основной функцией такого защитного реле является обеспечение нормального рабочего режима потребителя.

Устройство и виды

Существует несколько разновидностей тепловых реле, каждая из которых имеет свои особенности конструкции и применение. Рассмотрим основные виды тепловых реле.

РТЛ – 3-фазные тепловые реле, которые служат для обеспечения защиты электромоторов от перегрузки, заклинивания ротора, затяжного пуска, перекоса фаз. Реле фиксируются на клеммы пускателя ПМЛ. Реле также может функционировать как самостоятельное устройство защиты с клеммами КРЛ.

РТТ – реле трехфазное, служит для обеспечения защиты короткозамкнутых моторов от токовой перегрузки, затяжного пуска, заклинивания двигателя и других подобных аварийных режимов. Конструкция реле этого вида позволяет закрепить его на корпус магнитного пускателя марки ПМЕ и ПМА, либо в виде самостоятельного прибора на специально предназначенной панели.

РТИ – такие трехфазные реле предохраняют электрический двигатель от перегрузки, фазного перекоса, заклинивания и тому подобных тяжелых режимов. Крепление такого вида реле осуществляется на корпус пускателей КМИ и КМТ.

ТРН – 2-фазный вариант теплового реле, осуществляет контроль запуска и работы устройств, оснащен механизмом ручного возврата контактов и исходное состояние, температура внешней среды не влияет на функционирование реле.

Твердотельное реле на три фазы, в котором отсутствуют подвижные элементы, невосприимчиво к внешней среде, используется в местах с наличием опасности взрыва, обеспечивает защиту от таких же факторов, как и вышеописанные конструкции реле.

РТК – температура контролируется с помощью щупа, находящегося в корпусе электроустройства. Тепловое реле осуществляет контроль одного параметра.

РТЭ – это термореле плавления сплава, состоящее из проводника, выполненного из специального сплава, который способен плавиться при определенной температуре, разрывая тем самым электрическую цепь. Это реле встраивается в конструкцию устройства.

Принцип действия на примере конструкции реле РТТ-32П

Это реле предназначено для защиты электрических цепей от токов перегрузки. Реле третьей величины на номинальный ток 160 ампер.

Исполнение для комплектации с пускателями ПМА-4000, 5000, 6000 с переключающим контактом, пониженной инерционности. Предельно допустимый номинальный ток несрабатывания 100 ампер.

Реле такой конструкции работают следующим образом. Силовые клеммы включены последовательно в цепь каждой фазы. Токоведущие шины рассчитаны на длительный номинальный ток несрабатывания. При прохождении тока перегрузки по одной из фаз повышается температура шины и передается через нагревательные пластины к биметаллической пластине, которая нагреваясь, изгибается, воздействуя на планку толкателя.

Время срабатывания при шестикратном номинальном токе несрабатывания от 6 до 14 секунд. При этом необходимый ход планки от 1,5 до 2 мм. Планка-толкатель воздействует в свою очередь на рычаг сброса защелки. Защелка, поворачиваясь, освобождает подвижные контакты, которые под действием собственной пружины переключаются, размыкая цепь управления и замыкая цепь сигнализации.

После устранения причины повышенного тока можно повторно включить реле с помощью кнопки и возвратного рычага. При этом подвижные контакты зафиксируются подпружиненной защелкой.

Можно изменить номинальный ток несрабатывания в большую или меньшую сторону на 15 ампер. При этом эксцентриком смещается ось рычага сброса защелки, тем самым увеличивая или уменьшая время срабатывания реле.

Особенности теплового реле

В отличие от электрического автомата тепловое реле не разрывает силовые цепи, а только отключает цепь управления магнитного пускателя. Нормально включенный контакт теплового реле работает подобно кнопке «стоп» пускателя, и соединяется с ней по последовательной схеме.

В конструкции термореле нет необходимости повторять функции силовых контактов при его срабатывании, так как реле подключается непосредственно к магнитному пускателю. При таком исполнении схемы достигается значительная экономия материалов для силовых групп контактов. Намного проще подключать малый ток в управляющей цепи, чем отключать три фазы с большим силовым током.

При подключении необходимо знать, что тепловые реле не расцепляют силовую цепь непосредственно, а только подают сигнал на ее отключение при аварийном режиме. Чаще всего в термореле имеется две пары контактов. Одни из них постоянно замкнутые, а другие нормально разомкнутые. При сработке термореле, эти контакты меняются между собой состоянием, то есть, первые контакты становятся разомкнутыми, а вторые замыкаются.

Характеристики реле
Тепловые реле следует выбирать, путем выбора характеристик этого устройства по нагрузке и условиям работы электромотора или другого потребителя электроэнергии:
  • Номинальный ток.
  • Граница регулировки тока сработки.
  • Силовое напряжение.
  • Число и вид дополнительных контактов управления.
  • Мощность при включении управляющих контактов.
  • Граница срабатывания.
  • Чувствительность к перекосу фаз.
  • Класс отключения.
Схема подключения

Во многих схемах при подключении термореле к пускателю применяется постоянно замкнутый контакт, работающий последовательно с кнопкой «стоп» на управляющем пульте. Этот контакт маркируется буквами NC или НЗ.

Нормально включенный контакт при такой схеме может применяться для подключения сигнализации о действии защиты электромотора. В более серьезных усложненных схемах автоматического управления этот контакт может применяться для действия алгоритма аварийной остановки цепи питания.

Независимо от типа подключения электромотора и числа контакторов пускателя, подключение термореле в схему осуществляется простым методом. Оно размещается после контакторов перед электрическим двигателем, а размыкающийся (постоянно замкнутый) включается по последовательной схеме с кнопкой «стоп».

Достоинства и недостатки
Из преимуществ термореле можно назвать:
  • Малые размеры.
  • Небольшая масса.
  • Низкая стоимость.
  • Простая конструкция.
  • Долговечная работа.
Недостатками тепловых реле отмечаются:
  • Необходимость периодической настройки.
  • Периодическая проверка.
Как выбрать тепловые реле
При выборе и установке термореле необходимо учитывать, где оно будет применяться, и наличие функций:
  • Тепловое 1-фазное реле тока с автосбросом возвратится в исходное положение по прошествии некоторого промежутка времени. Если электромотор после сброса все еще находится в состоянии перегрузки, то реле снова сработает.
  • Реле с компенсацией температуры внешней среды (ТРВ) качественно работают в большом интервале температур внешней среды.
  • Многие тепловые реле оснащены разной степенью проверки фаз. Такие механизмы имеют возможность проверить электродвигатель на разрыв фазы с контактора, дисбаланс. При возникновении аварийной ситуации реле прекращает подачу электрического тока к мотору. Дисбаланс может вызвать опасные колебания тока или напряжения электродвигателя, что способствует его неисправности.
  • Функция недогрузки в термореле способна выявить снижение тока в цепи. Это происходит, когда электродвигатель начал работать вхолостую. Такие реле служат для выявления этих различий, по принципу обнаружения перегрузки.
  • Тепловые реле со световыми индикаторами – это модель со светодиодами или датчиками сигналов состояния и включения.

Стоимость термореле колеблется в широких пределах от 500 до нескольких тысяч рублей. Это зависит от производителя, характеристик, уровня пропускания тока. Перед приобретением нужно внимательно ознакомиться с описанием. Вся основная интересующая информация находится в паспорте изделия. Там же имеется инструкция по подключению.

Тепловое реле ртг, ртл, рти, трн, ртэ — принцип работы, где купить

Электрическое устройство защиты, разработанное для отключения машины, механизма или какой-либо установки или от питания для предохранения его от повреждений, называется электротепловое реле. Рассмотрим принцип действия, характеристики и устройство, которыми обладает тепловое реле тртп, и как подобрать и где купить нужную модель.

Принцип работы

Во время перегрузки реле тепловое типа РТТ 211, 111, 5, 321, и РТТ 141 включает защиту при помощи тепловых чувствительных элементов или магнитного пускателя пмл (пм-1-12). Эти датчики способны реагировать на состояние текущего защищенного компонента в процессе его эксплуатации.

Схема: тепловое реле ТРТ

Протекание тока через электрическое устройство генерирует тепло. Увеличение тока приводит к пропорциональному увеличению количества тепла. Протекание тока через электрический прибор является продуктом нагрузки, которой подвергается определенный аппарат. Если нагрузка возрастает до точки, которая превышает расчетные характеристики прибора, он будет перегреваться и, в конечном счете, поломается.

Принцип работы теплового реле

Тепловые реле предназначены для предотвращения повреждения или разрушения электрических машин, и срабатывает, реагируя на увеличение тока, индуцированного температурами. При повышении температуры выше нормы, реле отключит основной источник питания и предотвратит повреждение оборудования. Это отклонение достигается либо через механическую блокировку между реле и основным источником питания, либо через электрическую. Чувствительным элементом в обоих случаях выступает би-металлическая полоса.

Видео: тепловое реле

Би-металлическая полоса в тепловом реле состоит из двух разнородных металлов слитых вместе. Различные характеристики металла означают, что они нагреваются с разной скоростью, в результате чего полоса сгибается. Этот изгиб активирует отключение при перегреве. Электронное тепловое реле перегрузки использует датчик или зонд, чтобы «прочитать» ток, генерируемый температуры. Затем микропроцессор предписывает, когда схема будет открывать и перерезать основные поставки в зависимости от заданных параметров.

Биметаллические полосы могут быть нагреты непосредственно или косвенно. В первом случае ток проходит непосредственно через биметалл, во втором через изолированный слой обмотки вокруг полосы. Изоляция вызывает некоторое замедление потока тепла, инерция косвенно нагревает термореле сильнее при более высоких токах, чем при их непосредственном контакте, и пускатель пма задерживает сигнал. Часто оба этих принципа объединены.

Реле тепловое (РТ) электродвигателя и компрессора работает на принципе изменения температур. Из-за этого нужно очень внимательно следить за тем, чтобы температура в помещении, где находится прибор, не поднималась выше 30 градусов.

Конструкция реле

Реле цепи управления состоит из термочувствительного элемента, и множества контактных точек. Цепь управления для защищенного компьютера проходит через контакты реле. Если машина перегружена на текущих уровнях, тепловой датчик реле переключается к тепловым реле перегрузки, от которых, в свою очередь, поступает сигнал к основному источнику питания машины.

Термин «чувствительный элемент» описывает количество отдельных контуров, управляемых переключателем. Количество проводов определяет количество контактов испарителя. Переключатели реле тепла обычно имеют от одного до четырех полюсов – стинол (stinol), , .

Спусковой механизм приводит в действие вспомогательный переключатель реле тепловое авв (abb), который разрывает цепи катушки, ведущие на контактор двигателя кми. В этот момент индикаторный автомат показывает: «Сработало».

Схема подключения магнитного пускателя

Виды тепловых реле

  1. Тепловое биметаллические реле – ртл (ksd, lrf, lrd, lr, iek и ptlr). Их принцип работы и конструкция описывается выше, данные устройства являются наиболее распространенными.
  2. Твердотельное реле представляет собой электронное тепловое устройство (шнайдер – schne > Устройство теплового реле ТРН

Как выбрать реле

Покупатели могут выбрать и установить реле, учитывая его область применения и наличие определенных механизмов (функций):

  1. Тепловое однофазное токовое реле с автоматическим сбросом вернется в исходное положение «закрыто» по истечении определенного периода времени. Если двигатель все еще перегружен после сброса, реле сработает снова.
  2. Реле с компенсацией температуры окружающей среды трв эффективно работает в широком диапазоне температур окружающей среды.
  3. Некоторые реле имеют различные степени контроля фаз. Эти механизмы могут проверить двигатель на обрыв фаз с контактора, разворот, или дисбаланс. При любом этапе обнаружения проблем, реле обеспечивает прекращения подачи электроэнергии к двигателю. Дисбаланс фаз, в частности, может вызвать опасные колебания напряжения или тока двигателя, что приведет к его повреждению.
  4. Недогрузки относится к способности реле обнаружить уменьшение тока в результате разгрузки. Это может произойти, если, например, насос начинает работать всухую. Эти реле предназначены для обнаружения этих различий и поездки, как если бы обнаружение перегрузки.
  5. Реле с визуальными индикаторами – это технические продукты, которые имеют светоизлучающие диоды (СИД) или сигнализирующие датчики состоянии и подключения.

Средний прай-лист (цена) на реле тепловое – от 500 рублей до нескольких тысяч. Все зависит от того, кто производитель, пропускной уровень и максимальные показатели ампер. Поэтому очень внимательно читайте описание, его предоставляют в любом каталоге и магазине, чтобы не купить устройство слишком слабое для Ваших потребностей. Особенно важен ГОСТ и паспорт, там можно найти всю интересующую информацию. В некоторых городах (Екатеринбург, Москва, Минск и практически по всей Украине), можно купить ТР прямо с завода по сниженной цене.

Перед тем, как подключить реле, обязательно просмотрите подробную инструкцию, по возможности воспользуйтесь услугами профессионала (если подобного опыта у Вас не имеется). Ремонт осуществляется только при наличии специального оборудования и необходимых знаний, в противном случае настоятельно рекомендуем обратиться в сервисный центр.

Устройство и принцип действия теплового реле

Тепловое реле – это аппарат защиты, отключающий электродвигатели при длительных перегрузках, а также при обрыве одной из фаз от сети. Тепловое реле, как правило, устанавливается после магнитного пускателя, для того, чтобы обесточить электродвигатель, отключая питание с катушки магнитного пускателя своим размыкающим контактом в цепях управления.

Чаще всего на предприятиях используются тепловые реле серии ТРЛ, РТЛ, РТТ и другие. В этой статье рассмотрим устройство и принцип действия реле РТТ-111 УХЛ 4, которое используется с магнитными пускателями серии ПМЕ.

Технические характеристики теплового реле РТТ-111 УХЛ4

-номинальный ток теплового расцепителя – 10 А;

-напряжение силовой цепи – 220 В, 400 В, 660 В;

-один нормально замкнутый контакт 95-96;

-уставка тока срабатывания от 5,35 А до 7,35 А.

Устройство и принцип действия теплового реле

Тепловые реле устроены аналогично друг другу и состоят из следующих основных деталей. Главным чувствительным элементом является биметаллическая пластина, состоящая из двух металлов: сплавов железа с никелем и латуни, соединенных пайкой и имеющих разные по величине коэффициенты линейного теплового расширения. Этот коэффициент характеризует то, насколько может удлиняться, в данном случае, металлическая пластина при ее нагревании. Для сравнения, коэффициент линейного теплового расширения латуни составляет 18,7 () по сравнению с сплавом железа и никеля 1,5 (), поэтому при нагреве латунь будет быстрее увеличиваться в длине, изгибая, тем самым, биметаллическую пластину в свою сторону. Это свойство и используется в тепловом реле!

1-корпус теплового реле;

2-биметаллическая пластина с нагревательным элементом;

5-пружина замыкающего контакта;

6-винт регулировки пластины температурного компенсатора;

7- пластина температурного компенсатора;

9-эксцентрик с движком уставки тока срабатывания;

10- кнопка возврата реле в рабочее состояние.

По закону Джоуля-Ленца электрический ток, протекающий по проводнику вызывает его нагрев, то есть часть электрической энергии уходит на тепловые потери. И чем больше по значению сила тока в проводника одного и того же поперечного сечения, тем больше он нагревается (перегрузка). Но в тепловых реле биметаллическая пластина нагревается непосредственно от нагревательного элемента-проводника, по которому протекает электрический ток к электродвигателю. Нагретая и изогнутая биметаллическая пластина воздействует через толкатель на исполнительную пластину температурного компенсатора, которая, в свою очередь, выводит из зацепления замкнутые контакты в цепи катушки магнитного пускателя и кнопку включения реле в рабочее состояние(наиболее наглядно изображено на этом рисунке).

Так как на работу теплового реле влияет температура окружающей среды (дополнительный нагрев), то в качестве «противовеса» используется также биметаллическая пластина температурного компенсатора, которая изгибается в противоположную сторону и регулируется специальным винтом.

На эксцентрике или регуляторе тока срабатывания есть шкала с 5 делениями влево(уменьшение тока) и с 5 делениями вправо (увеличение тока) от начальной риски. Ток срабатывания регулируется путем изменения зазора между толкателем и исполнительной пластиной с помощью воздействия движка эксцентрика на пластину температурного компенсатора.

При обрыве питания одной из фаз трехфазного электродвигателя нагрузка переходит на две другие фазы, что приводит к возрастанию в них электрического тока, нагреву обмоток и срабатыванию, в итоге, теплового реле- защита от неполнофазного режима!

Рекомендации:

-при срабатывании теплового реле, необходимо дать время для остывания тепловому расцепителю и обязательно найти причину его срабатывания (произвести тщательный осмотр электродигателя);

— в зависимости от температурных условий эксплуатации электродвигателей советую регулировать эксцентрик влево или вправо;

-периодически производить технический осмотр и ремонт теплового реле во избежание преждевременного выхода из строя!

Тепловое реле — назначение, принцип работы

Основное предназначение тепловых реле — защита электрических потребителей от возможных перегрузок в сети. В некоторых моделях предусмотрена также возможность автоматического отключения при появлении асимметрии в разных фазах, а также при пропадании одной из них.

Превышение тока выше номинального значения приводит к перегреву проводников и, как следствие, разрушению изоляции. Грамотно подобранные тепловые реле способны также защитить, например, электродвигатель в случае заклинивания якоря. Их можно также использоваться для регулировки (поддержания) необходимой температуры, например, в холодильном оборудовании или бытовых приборах.

Принцип работы теплового реле

Наиболее широко применяются конструкции, в которых главным элементом является специальная биметаллическая пластина.

Последняя выполнена из двух слов металла с различными температурными линейными коэффициентами расширения. Благодаря этому при нагревании она деформируется (изгибается) и посредством специального рычага замыкает контакты. Как правило, для изготовления таких пластин используют инвар в паре с хромоникелевой или немагнитной сталью.

Так как эта процесс выполняется плавно, неизбежно возникновение электрической дуги между сближающимися контактами.

Чтобы предотвратить их выгорание и образование нагара, применяется «прыгающий» контакт, который резко срабатывает после достижения критических параметров.

Сама пластина нагревается за счет проходящего через нее тока или расположенного рядом нагревателя в виде спирали. Часто применяется и комбинированная схема. В любом случае температура нагрева находится в прямо пропорциональной зависимости от потребляемого электрооборудованием тока.

После срабатывания реле, в зависимости от конструктивного исполнения, возвращается в исходное состояние либо автоматически, по мере остывания, либо с помощью соответствующего переключателя (кнопки).

Правильный выбор тепловых реле

Основной характеристикой теплового реле является время срабатывания в зависимости от нагрузочного тока (так называемая времятоковая характеристика).

Главный критерий – номинальный ток потребления электрооборудования. Тепловое реле должно иметь соответствующие характеристики на 20-30 % выше, что обеспечивает ее срабатывание в течение соответствующей процентной перегрузки в течение 20 минут.

Влияние внешних климатических факторов на тепловые реле

Так как деформация биметаллической пластины зависит от ее фактического нагревания, время срабатывания реле находится в прямой зависимости также от температуры окружающей среды.

И при больших контрастах следует предусматривать в качестве дополнительной функции плавную регулировку. Также для снижения такого влияния следует подбирать реле с максимально возможной температурой срабатывания, а также располагать их в тех же помещениях, где находятся объекты, предназначенные для защиты.

Напоследок необходимо отметить, что тепловые реле не предназначены для предохранения оборудования от таких внештатных ситуаций, как короткое замыкание. В этом случае они сами нуждаются в специальной защите.

Тепловое реле LR2 D1314. Назначение, устройство, схема подключения

Здравствуйте, уважаемые посетители и гости сайта «Заметки электрика».

В этой статье я расскажу Вам про назначение, устройство, схему подключения теплового реле на примере LR2 D1314 от фирмы «Schneider Electric». Тепловой компонент рассматриваемого реле имеет номинальный ток 10 (А), а токовый диапазон уставок его составляет от 7 до 10 (А). Об остальных технических характеристиках поговорим чуть позже. А теперь давайте перейдем к определению и назначению теплового реле.

Как Вы уже знаете, тепловое реле, или другими словами реле перегрузки, устанавливается в схемах магнитного пускателя, как нереверсивного типа, так и реверсивного.

Более подробно об этом Вы можете ознакомиться здесь:

Назначение теплового реле

Тепловое реле — это электрический коммутационный аппарат, который предназначен для защиты трехфазных двигателей от токовой перегрузки недопустимой продолжительностью (например, при заклинивании ротора или механической его перегрузки), а также от обрыва любой из фаз питающего напряжения (по функции аналогично реле контроля фаз).

Вот список самых распространённых (известных) серий тепловых реле: ТРП, ТРН, РТТ, РТИ (аналог LR2 D13), РТЛ.

О каждой серии тепловых реле я постараюсь написать отдельную статью, подписывайтесь на рассылку новостей сайта «Заметки электрика».

Прошу заметить, что тепловое реле не защищает электродвигатель от коротких замыканий по причине того, что оно срабатывает с выдержкой времени, т.е. не мгновенно — это отчетливо можно увидеть по графику (кривой) срабатывания теплового реле. Для защиты двигателя от короткого замыкания в силовую цепь перед магнитным пускателем устанавливаются автоматические выключатели или предохранители.

Технические характеристики теплового реле LR2 D1314

Вот его внешний вид:

Я уже говорил выше, что тепловое реле LR2 D1314 имеет конструктивное исполнение один в один, как у теплового реле РТИ.

Ниже я приведу основные технические характеристики, рассматриваемого в данной статье, теплового реле LR2 D1314 от компании «Schneider Electric»:

    номинальный ток теплового компонента — 10 (А)

Кривая срабатывания теплового реле с классом отключения 20 — показывает среднее время срабатывания реле в зависимости от кратности тока уставки:

Согласно ГОСТ 30011.4.1-96 (п.4.7.3, таблица 2) время срабатывания теплового реле (класс 20) при кратности тока уставки реле 7,2 составляет 6 — 20 секунд.

Рассмотрим устройство передней панели теплового реле LR2 D1314

Рассмотрим устройство передней панели.

На ней имеется кнопка-переключатель (синего цвета) режима повторного взвода (включения) реле:

  • «А» — автоматический взвод
  • «Н» — ручной взвод

На данный момент выставлен автоматический режим повторного взвода — синяя кнопка-переключатель утоплена. Это значит, что при срабатывании теплового реле схему питания двигателя можно беспрепятственно и повторно включить.

Чтобы переключиться на ручной режим, нужно открыть защитное стекло и повернуть синюю кнопку-переключатель влево — он выступит наружу. В ручном режиме после срабатывания теплового реле необходимо в ручную нажать синюю кнопку-переключатель, иначе нормально-замкнутый контакт NC (95-96) останется разомкнутым, тем самым не даст собрать схему питания и управления электродвигателя.

Также на передней панели теплового реле LR2 D1314 располагается красная кнопка «Тест» («Test»). С помощью нее имитируется работа внутренних механизмов реле и его вспомогательных контактов.

Кнопку «Test» я нажимаю с помощью небольшой отвертки.

У данного типа теплового реле имеется индикация срабатывания в виде желтого (оранжевого) флажка в окошке. Также по этому флажку можно ориентироваться о текущем состоянии вспомогательных контактов реле. Когда в окошке находится желтый флажок, то значит нормально-замкнутый контакт NC (95-96) находится в разомкнутом состоянии, а нормальный-разомкнутый контакт NO (97-98) — в замкнутом.

Ну вот мы плавно подобрались к красной кнопке «Стоп». Красная кнопка «Стоп» выполнена в виде выступающего «грибка» и нужна для принудительного размыкания нормально-замкнутого контакта NC (95-96). При этом катушка магнитного пускателя теряет питание и двигатель отключается от сети.

Еще на передней панели теплового реле LR2 D1314 имеется регулятор уставки, с помощью которого регулируется и настраивается уставка срабатывания теплового реле. В нашем случае ток уставки реле находится в пределах от 7 до 10 (А). Регулировка производится путем поворота регулятора до совмещения нужной уставки реле и риски-треугольника.

После всех настроек и регулировок защитная крышка теплового реле закрывается и пломбируется. Для этого на ней имеется специальное «ушко». Таким образом, доступ к регулировке уставок реле будет закрыт и никто из посторонних в процессе эксплуатации не сможет их изменить.

Схема подключения теплового реле LR2 D1314

Представляю Вашему вниманию схему теплового реле LR2 D1314:

Входные силовые цепи (медные выводы) не маркируются и подключаются непосредственно к пускателю или контактору. Маркировка выходных главных (силовых) цепей теплового реле имеют маркировку: T1 (2), Т2 (4), Т3 (6) и к ним подключается электродвигатель.

У данного типа реле существует две пары вспомогательных контактов:

  • нормально-замкнутый NC (95-96)
  • нормально-разомкнутый NO (97-98)

Нормально-замкнутый контакт используется в схеме управления магнитным пускателем и подключается, например, перед кнопкой «Стоп». Нормально-разомкнутый контакт чаще всего используется в цепях сигнализации для вывода световой индикации на панель оператору или диспетчеру при срабатывании теплового реле.

Для примера я подключил тепловое реле на выводы T1 (2), Т2 (4), Т3 (6) магнитного пускателя ПМЛ-1100. Вот так это выглядит:

Крепится тепловое реле к пускателю с помощью силовых выводов и специального крючка, который плотно фиксирует корпус реле в неподвижном состоянии.

В зависимости от величины и типа пускателей или контакторов выводы («ножки») теплового реле регулируются путем изменения своего межосевого расстояния.

На корпусе есть «подсказка» с рекомендациями по выставлению «ножек» теплового реле в зависимости от типа пускателя или контактора.

Конструкция и внутреннее устройство теплового реле LR2 D1314

Для этого открутим 3 крепежных винта.

Затем тонкой отверточкой очень аккуратно вскроем защелки по периметру корпуса. Почему аккуратненько — да потому что корпус выполнен из пластика, который очень хрупкий и можно с необычайной легкостью сломать крепежные защелки.

Снимаем верхнюю крышку реле.

На фотографии видны три биметаллические пластины, которые установлены в каждом полюсе (фазе).

Откручиваем винты выходных клемм и вытаскиваем из корпуса биметаллические пластины.

Затем снимаем спусковой механизм теплового реле.

Принцип работы системы рычагов спускового механизма.

Вот так выглядит тепловое реле LR2 D1314 без биметаллических пластин и спускового механизма.

Чтобы добраться до контактной системы теплового реле, нужно снять регулятор уставок и выкрутить винт.

На фотографии ниже изображены контакты теплового реле в режиме готовности.

А сейчас показаны контакты при срабатывании теплового реле:

Я уже упоминал в начале статьи, что при нажатии на кнопку «Стоп» принудительно размыкается нормально-замкнутый контакт NC (95-96), при этом нормально-разомкнутый контакт не изменяет своего положения. Вот подтверждение моих слов.

А вот фотография всех деталей теплового реле LR2 D1314.

Принцип работы теплового реле LR2 D1314

Несколько слов о конструкции биметаллической пластины.

Биметаллическая пластина состоит из 2 пластин разных материалов, у которых коэффициент линейного теплового расширения значительно отличается друг от друга. Например:

  • сплав железа с никелем (инвар) со сталью
  • ниобий со сталью

Соединяются эти две пластины с помощью сварки или клепки.

Один конец биметаллической пластины закреплен (неподвижный), а другой — подвижный и соприкасается со спусковым механизмом теплового реле. Когда биметаллическая пластина нагревается от проходящего через нее тока, она начинает изгибаться в сторону материала, у которого коэффициент линейного теплового расширения меньше.

А теперь рассмотрим принцип работы теплового реле LR2 D1314.

В нормальном режиме работы электродвигателя через биметаллические пластины трех полюсов (трех фаз) протекает ток нагрузки электродвигателя — пластины нагреваются до определенной начальной температуры, которая не вызывает их изгиб. Предположим, что по некоторой причине ток нагрузки двигателя увеличился, соответственно, по биметаллическим пластинам будет протекать ток больше номинального, который и вызовет их подогрев (температура станет больше начальной). При этом подвижная часть биметаллических пластин начнет изгибаться и приведет в действие спусковой механизм теплового реле.

После срабатывания теплового реле нужно подождать определенное время, пока не остынут биметаллические пластины и не разогнутся в нормальное положение. Да и включать сразу же электродвигатель в сеть после срабатывания теплового реле совершенно нецелесообразно, ведь в первую очередь нужно определить причину и устранить ее.

P.S. Пожалуй на этом я закончу статью о тепловом реле LR2 D1314 от фирмы «Schneider Electric». В следующих статьях я расскажу Вам как правильно выбрать тепловое реле, а также покажу как его настроить и проверить на стенде. Если у Вас имеются вопросы по материалу статьи, то готов выслушать Вас — форма комментариев всегда открыта.

57 комментариев к записи “Тепловое реле LR2 D1314. Назначение, устройство, схема подключения”

Статья 5/5. Вся информация изложена детально, наглядно и доступным языком. Интересно было почитать)

Спасибо, в скором времени добавлю к ней видео — сегодня прогружал током 50 (А) снятые с этого теплового реле биметаллические пластины. Наглядно видно, как они изгибаются при нагреве.

А когда будет про УЗИП

Отличная статья,спасибо автору за труд!

Дима спасибо очень все доступно, и мы у тебя учимся.

Красота, вот с такими как раз и работаю…
Спасибо за статью.

чувствительность к асимметрии фаз — срабатывает при 30% от номинального тока по одной фазе, при условии, что по другим фазам протекает номинальный ток,а можно узнать как срабатывает? Для защиты двигателя от короткого замыкания в силовую цепь перед магнитным пускателем устанавливаются автоматические выключатели или предохранители-предохранители мне кажется не желательно ставить.

Оно подходит только к новым магнитным пускателям

отличная статья,но вот есть вопрос такой:я собираю схему подключения ТЭНов через контакторы с реле РТИ,отключение должно быть через реле времени ТЕМП(это одноканальный программируемый автомат)с замыкающим выходом.не могу понять как как его(Темп-1м) использовать как кнопку «Стоп»…

Евгений, если используете РТИ, то там есть кнопка «Стоп» — ее и используйте.

Мне нужно,чтобы таймер Темп-1М отключал,после отчета времени…

Спасибо за ликбез. Информативно, наглядно, доступно.
Александр:
25.06.2013 в 19:45
… Для защиты двигателя от короткого замыкания в силовую цепь перед магнитным пускателем устанавливаются автоматические выключатели или предохранители-предохранители мне кажется не желательно ставить.
Почему?

А с другими тепло реле уже есть статьи или нет ?

Пока нет, а что интересует какой то конкретный тип?

Да как гляну какой напишу

обьясните подрбнее про автоматический и ручной взвод?

расскажите как правильно выбрать тепловое реле, а также как его настроить и проверить на стенде.

Дмитрий, ждите новых статей — будет время напишу об этом.

спасибо.
желательно со схемой подключения.

Здравствуйте, Дим. Я учусь на 4 курсе ИГЭУ по специальности «Электроснабжение». Сейчас мы изучаем ЭА. Чем определяется граница подвижной части биметаллической пластины теплового реле визуально? По фотографии видно , что оба слоя биметаллической пластины соединены между собой, причём подвижная часть через намотку ведёт к одному выводу, а неподвижная -к другому. Как я поняла подвижная часть является термоактивным слоем биметаллической пластины, а неподвижная- термопассивным. При нагревании термоактивный слой изгибается в сторону термопассивного. Поэтому непонятно, через какой вывод, подвижный или неподвижный,либо обоих одновременно, осуществляется передача сигнала к контакту теплового реле о размыкании?

Я приняла Дмитрия за Админа, судя по адресу почтового ящика, с которого пришло письмо об авторизации. Извините, Админ. Поэтому обращаюсь к Админу с тем же вопросом.

Лиза, добрый вечер. Я и есть создатель этого сайта, я и есть его администратор. Зовут меня Дмитрий. Подвижная часть биметаллических пластин (на рисунке показана эта часть) при отгибании в сторону действует на спусковой механизм, который в свою очередь приводит в действие рычаг отключения.

Здравствуйте, спасибо за информативность.
Хотел спросить другое, всем известно, что тепловое реле для защиты двигателей. А зачем их используют для защиты цепи освещения? Это вроде активная нагрузка, чему там заклинивать? Но все производители Ящиков управления освещением ЯУО изготавливают их с тепловыми реле…
Не сталкивались? Заранее спасибо.

Если не сложно сделайте пожалуйста статью про Реле тепловое серии РТТ 211
он у меня стоит на реверсе 1 двигателя и бывает выключается непонятно ис за чего хотя перегрузки он не испытывает да и фаза не пропадает

Дмитрий здравствуйте! Расскажите пожалуйста,а лучше покажите схему подключения контактора ABB ebs 20-11 в однофазную цепь(пусть это будет квартира или дом). Для чего он служит и его применение. Буду Вам признателен,заранее спасибо.

Андрей, для начала почитайте на сайте раздел «Реле, контакторы, датчики». Смысл подключения контактора АВВ аналогичен: если вкратце, то А1 и А2 — это катушка, а 1-2 и 3-4 — это его силовые контакты.

Спосибо.Это отличная статья

Отличный сайт, можно прям издавать книгу. Вот бы ещё написать инструкцию к паспортам для ремонта станков с ЧПУ.

здравствуйте! Мне понравился этот сайт подробным описанием и не маловажным картинками. Я работаю на заводе по перерабатыванию камня в щебень электриком, месяцев шесть, и я если често, в первые сталкиваюсь с оборудованием, ну вроде потихонечку въезал.Есть конечно некоторые непрнятные нужные для работы электроустанрвки в схемах управления, и вот настало то время когда нужно посоветоваться, а точнее узнать, как настроить тепловое реле, а их кажется, пока не считал около тринадцати, и это ведь на каждый двигатель по одному, и не дай бог он будет не правильно работать, тогда двигателю кирдык.И такой вопрос, если т.р. как лр2 д 1314 с отсечкой от 7 до 10 , так нужно понимать, что пластины эти, биметаллические, пропускают уже свои стандартные, номинальный ток 10а. это с расчетом в полтора раза больше при запуске двигателя, и получается, что отсечку я ведь должен повысить на 2 или 3а, так как я думаю, ему, двигателю, будет достаточно, ведь мы берем пусковую нагрузку, начальную, а это тоже много кажется для обмотки статора.А дело этого вопроса вот в чем, вообще, все установки, настройки выполнял какрй- то китаец, а потом он естественно свалил, наверное обратно на родину .И тут менялись не чуть-ли через каждые три месяца электрики. А я решил все это привести в порядок. Кабеля, клемные коробки, пускатели, тепловые реле, реле времени, и т.д.Спасибо.

Марат, Вы немного неправильно трактуете принцип работы теплового реле. Оно защищает цепь только от перегрузки или обрыва фаз. От короткого замыкания в цепи защищает автоматический выключатель, который устанавливается в цепь последовательно с тепловым реле.

Теперь по настройке. Если рассказать совсем вкратце, то регулятор выставляйте 1,25 от номинального тока двигателя. При этом учитывайте режим работы двигателя — недогружен или слегка перегружен. В идеале, для расчета возьмите ток, измеренный по факту. Предположим, что рабочий (номинальный) ток двигателя составляет 7 (А), значит регулятор устанавливайте на 8,75 (А).

Все понятно с тем, как тепловое реле защищает цепь от перегрузки.
Но каким образом ТР выполняет фунуцию реле контроля фаз?
Ведь биметаллические пластины не будет изгибпаться если, к примеру, по двум из трех фаз течет ток номинальный или ниже, а третья фаза вообще оборвана.

А подскажите пожалуйста, куда конкретно подключать провода к питанию магнитного пускателя А1, А2. если можно нарисуйте?
спасибо

Александр, почитайте статьи про магнитный пускатель ПМЛ и схему подключения магнитного пускателя — там подробно написано об этом.

спасибо уже разобрался.
скажите лучше если на двигателе указано I = 8А I lim 8,9A на сколько ампер настраивать Тепловое реле?

Замечательно доходчиво всё расписано!

Думаю, можно добавить упоминание о том, что такие тепловые реле можно устанавливать отдельно от пускателя на дин-рейку с помощью специального адаптера(случается, когда один пускатель на ряд присоединений).

В случае щебневого завода — подозреваю, что там могут быть особые условия работы двигателей. Поэтому стандартные рекомендации вряд ли подойдут. Хотя, на особо ответственных установках там уже должны быть частотники…

Добрый вечер, Дмитрий.
Подскажите, пожалуйста. Есть тепловое реле. ТРН-25.
Под винтами зажимов двух крайних приходящих от пускателя фаз (т.е фаз, которые проходят через это тепловое реле) стоят цифры 12,5. Правильно ли я понимаю, что ток уставки этого реле находится в пределах от 0 до 12,5 (А). И еще не совсем понятно, как эта уставка регулируется. Шкала в виде полукруга. На месте «9-ти часов» стоит «-» . Дальше идут четыре деления по кругу вверх без каких-либо цифр, в точке «12 часов» стоит «0″. Дальше четыре деления по кругу вниз, тоже без цифр, и на месте «3 часа» – стоит «+». И колесико с риской и выемкой под отвертку для изменения уставки от «-» через «0″ и до «+».

К моему последнему вопросу. Вам, Дмитрий, конечно же, достаточно одного названия (ТРН-25), чтобы было понятно,как выглядит шкала регулировки. Для читателей же, которым мое описание этой шкалы показалось непонятным, добавлю, что такой тип реле можно увидеть в статье — «Схема реверса асинхронного двигателя с короткозамкнутым ротором»

Сергей, это у Вас тепловое реле ТРН-25 с номинальным током теплового элемента 12,5 (А), его еще называют номинальным током несрабатывания реле. С помощью регулятора можно изменять уставку реле от -25% до +25% от величины номинального тока. Каждое деление на шкале соответствует 5%. В положении «0″ — уставка равна номинальному току 12,5 (А). Если повернуть регулятор в сторону положения «+», то номинальный ток теплового элемента увеличивается, а если в сторону «-», то уменьшается.

На почту приходит множество писем с подобными вопросами — может статью написать о ТРН?

Дмитрий, спасибо большое за быстрый ответ.
Т.е получается в данном случае диапазон регулировки — от 9,4 до 15.6 (А). Правильно?
Но вот не совсем понятно, почему значение 12,5называют , как вы сказали, «номинальным током несрабатывания реле»? Ведь оно же входит в этот диапазон токов уставки (является средним значением этого диапазона), а, стало быть, реле должно сработать и в том случае, если уставка выставлена на значении «0″, т.е. — 12,5 А. Или я что-то не правильно понял?
Если указанный мной диапазон верен, получается данный тип реле, точнее его номинал в моем случае выбран неправильно, поскольку измеренный ток на фазах: 6,4 ; 6,5 и 6,2, и уставка должна быть 6,4*1,25=8 (А). Т.е нижний предел этого реле выше требуемого значения уставки. Все правильно, Дмитрий?
И еще хотелось узнать. Сколько времени проходит с момента достижения тока нагрузки установленного значения уставки до срабатывания реле. Оно стандартно или колеблется в зависимости от типа реле.

А по поводу «на почту приходит множество писем с подобными вопросами – может статью написать о ТРН?».
Признаюсь, изучая материалы Вашего сайта или, время от времени сталкиваясь с чем-то непонятным на работе, действительно трудно удержаться от соблазна попросить Вас раскрыть тот или иной вопрос. Ведь поистине, как периодически замечают посетители и постоянно отмечаю я сам, у Вас это получается удивительно хорошо: в каждой статье чувствуется стремление написать ее максимально понятно, наглядно и всесторонне, написать так, чтобы после прочтения у читателей возникало как можно меньше вопросов. Сама подача материала какая-то доброжелательная! При всем обилии информации в сети, ваш сайт в этом отношении — редчайший случай, а может в своей области и единственный. Вот бы так учебные пособия писались! Учиться было бы одно удовольствие . Я уже не говорю про выдержку и спокойствие, с которыми Вы отвечаете на порой достаточно бестактные, а иногда и просто злобные комментарии… Так вот, увидеть новые статьи на определенные важные, наверное не только для меня, темы, конечно, хотелось бы, но предлагать это Вам не решаюсь, понимая, как много времени уходит уже только на написание запланированных статей, на то, чтобы ответить на постоянно растущее количество вопросов читателей. А уж если при этом писать еще и статьи «по пожеланию», наверное, нужно вообще забросить работу, личную жизнь и заниматься только этим сайтом ))) Хотя, с другой стороны, каждая новая статья «снимает» многие вопросы, которые «сквозят» в разных статьях и разделах, и, соответственно, избавляет от необходимости на них отвечать, ограничиваясь только ссылками на них. Например, периодически встречается непонимание (в том числе и у меня до определенного времени), когда речь заходит о трехфазной сети, но с линейным и фазным напряжением не 380 и 220 В соответственно (как это многим привычно и кажется единственно возможным), а 220 и 127 В или 660 и 380В соответственно. Вопросы связанные с занулением, перекосе фаз и т.д.
Простите, что получилось так многословно. В очередной раз говорю Вам ОГРОМНОЕ СПАСИБО за то, что уже сделали, написали, рассказали. За Ваши ответы. За то, чему уже научили.

Всего доброго, Сергей

Очень понравилась Ваша статья – профессионально, доходчиво и полно.Обращаюсь к Вам за помощью и за консультацией. Самостоятельно подключал реле «kasan» LR2 D1307 для защиты однофазного эл.двигателя гидронасоса, рабочий ток двигателя 2,2А, условия работы легкие, ноль пустил через 1 слева клеммы, фазу к 2 вводу, со 2 клеммы на нормально замкнутый контакт, с него на 3 ввод и к нему фазный прод к насосу

Сделал фотографию но не знаю как её разместить в комменте

Собрал испытательную схему для подключения и защиты эл.двигателя гидронасоса с рабочим током 2,2 А(условия работы лёгкие). Проверял на эл.гриле W 800 ватт, рабочий ток 3,6-3,7А (токовые клещи). Установил ток отключения 2,5А , отключалось через 3 -4 минуты, что вполне устраивало. Но и при автомате и при ручном управлении нормально замкнутыми контактами происходило их замыкание после остывания реле(синий переключатель-кнопка в верхнем правом углу реле). Нормально замкнутым контактом я разрывал цепь питания, т.к. в схеме включения насоса (однофазного) есть только УЗО RCBO RB0603 B6 и выключатель BA47-29M C4, и реле времени которое включало и выключало насос.
Или синяя кнопка не работает или такая конструкция этого реле и необходимо ставить однофазный контактор. Или я что-то напутал. Подскажите, пожалуйста стоит ли разбирать реле чтобы кнопка заработала, или таки ставить контактор. С уважением Владимир Семёнович Глущевский.

«Если какие то моменты не ясны, то задавайте вопросы на сайте или лично мне на почту — буду рад помочь.» Не сочтите за труд, ответ те мне пожалуйста, чтобы я смог отправить Вам письмо с фотографией схемы которую я собрал.

Тепловое реле для электродвигателя схема подключения

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле

В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test . Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop . Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset . Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset . Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Характеристики реле

При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме

Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Схема подключения реле тепловое

Подключение теплового реле (схема)

Реле тепловое устанавливается для недопущения воздействия на электродвигатели от значительных и продолжительных токовых перегрузок, образующихся при обрыве одной из фаз либо перегрузки вала. Также при помощи ТР осуществляется защита обмотки от последующего повреждения после междувиткового замыкания. Читайте также статью ⇒ Реле напряжения.

Что такое тепловое реле?

Реле называется тепловым из-за его принципа действия, во многом подобного на принцип работы выключателя-автомата, в котором биметаллические пластины, нагретые электротоком, выполняют разрыв цепи и давят на механизм спуска.

Так как тепловое реле в схемах требуется подключать за магнитным пускателем, отсутствует необходимость дублирования функции контактора после размыкания цепей в аварийных случаях. Выбор в пользу такой защиты позволяет достичь существенной экономии материала для силовых контактных групп. Ведь гораздо проще коммутировать малые токи единой управляющей цепи, чем разрывать сразу три контакта под высокой токовой нагрузкой.

Совет №1: При подключении прибора следует помнить, что тепловым реле силовые цепи не разрываются напрямую, им подается управляющий сигнал при повышении нагрузок.

Обычно в конструкции тепловых реле предусмотрено наличие двух контактов:

  • нормально замкнутого;
  • разомкнутого в нормальном положении.

После сработки реле оба этих контакта одновременно изменяют сове положение.

Устройство и виды

Реле тепловые выпускаются нескольких типов, для каждого из них характерны свои конструктивные особенности и область использования. Основными типами являются следующие реле:

РТЛ представляют собой 3-х фазные устройства, предназначенные для защиты электродвигателей от перегрузок, заклинивания ротора, продолжительного пуска, фазного перекоса. Устройства ставятся на клеммные контакты пускателя ПМЛ. Могут самостоятельно работать как защитный прибор с клеммами типа КРЛ.

Реле типа РТТ — также трехфазное устройство, обеспечивающее защиту короткозамкнутых двигателей от затяжных пусков, заклинивания, токовых перегрузок, иных, не менее опасных аварийных ситуаций. Благодаря особенностям конструкции реле крепятся к корпусу магнитных пускателей типов ПМА и ПМЕ, а также в качестве отдельного устройства на специальной панели.

Трехфазные реле РТИ используются для защиты электромотора от перегрузок, перекосов фаз, стопорения и других тяжелых режимов функционирования. Крепятся к корпусу пускателей КМТ и КМИ.

ТРН — тепловой 2-х фазное реле, посредством которого осуществляется контроль за пуском и работой приборов. Оснащается механизмом ручного возврата клемм в первоначальное положение, при этом температура среды на эффективность функционирования реле не влияет.

Реле перезагрузки тепловое РТЛ с уровнем защиты IP20 на номинальный ток 100А

Твердотельные реле — 3-х фазные устройства, конструкция которого не предусматривает наличия подвижных частей. Реле также не восприимчивы к воздействию окружающей среды, применяются в местах с риском разрыва.

В реле типа РТК контроль температуры выполняется посредством щупа, размещенного в корпусе прибора.

Термореле типа РТЭ состоит из проводника, изготовленного из специального сплава. При достижении температуры порового значения проводник плавится, тем самым разрывая цепь. Встраивается в конструкцию электромотора. Читайте также статью ⇒Как работает реле контроля напряжения?

Как выбрать реле по характеристикам?

При подборе реле следует изначально разобраться в его основных параметрах:

  • значению номинального тока;
  • диапазона регулирования тока сработки;
  • сетевого напряжения;
  • тип и количество клемм;
  • расчетной мощности подключаемого устройства;
  • минимальной границы сработки;
  • класса устройства;
  • реакции на фазный перекос.

Номинальный ток реле должен быть идентичным указанному на электромоторе, к которому устройство будет подсоединяться. Величину тока двигателя можно увидеть на планке, размещенной на его крышке или корпусе.

Сетевое напряжение для реле должно быть равным значению сети, в которой оно будет располагаться — 220 либо 380/400 В. Также значение имеет тип и число клемм, так как в контакторах различных типов реализованы различные способы подсоединения.

Реле также должно выдерживать мощность электромотора для недопущения ложной сработки. Для двигателей трехфазных следует подбирать реле, обеспечивающее дополнительную защиту от фазного перекоса.

Особенности подключения

Обычно монтаж теплового реле осуществляется вместе с магнитным пускателем, выполняющим соединение и запуск электродвигателя. Выпускаются также и устройства, устанавливающиеся как самостоятельный прибор на DIN-рейке либо на монтажной панели — ТРН или РТТ.

Если у реле ТРН присутствует лишь пара входящих подключений, фаз в нем все равно три. Отключенный фазный провод выходит с пускателя к двигателю, минуя устройство. Изменение тока в электромоторе происходит пропорционально во всех фазах, потому достаточно выполнять контроль только за двумя из них.

Магнитный пускатель с тепловым реле ТРН с двумя входящими подключениями

Устройства снабжаются двумя группами клемм в нормально открытой и нормально замкнутой группах.

Структурная схема подключения теплового реле согласно требований ГОСТ с обозначениями

Ниже представлена схема управления, отключающая мотор от сети при возникновении нештатной ситуации от обрыва фазы либо перегрузки. Вращение двигателя осуществляется в одну сторону, управление включением выполняется с одного места посредством кнопок ПУСК и СТОП.

Включение реле в 3-х фазную сеть, управление выполняется через кнопки Стоп и Старт

Автомат подключен и к верхним контактом поступает напряжение. После нажима кнопки ПУСК происходит подключение катушки пускателя А1 и А2 к сети L1 и L2. В представленной схеме установлен пускатель, катушка которого рассчитана на 380 В.

При включении пускателя катушкой происходит замыкание дополнительных контактов 13 и 14. Кнопку ПУСК теперь можно отпустить, но контактор останется включенным. Такая схема получила название «Пуск с самоподхватом».

Для отключения электромотора от сети нужно обесточить катушку. Проследив на представленной схеме направление течения тока, можно заметить, что отключение произойдет при нажиме кнопки СТОП либо размыкании клемм теплового реле (на схеме прибор обозначен прямоугольником красного цвета).

Таким образом, при возникновении нештатной ситуации при сработке реле разрывается цепь, пускатель снимается с самоподхвата, обесточивая при этом электромотор. Перед повторным пуском после сработки необходимо выполнить осмотр механизма для выявления причин внепланового отключения и не включать вновь до их устранения.

Зачастую причиной сработки служит повышенная температура внешнего воздуха — такой момент также следует учесть при настройке механизмов и их эксплуатации.

Совет№2: В домашних хозяйствах область использования тепловых реле не ограничивается лишь станками и иными механизмами собственного производства. Не лишним было бы применять устройства для установки в системах, контролирующих ток в насосах отопительной системы.

Работа циркуляционного агрегата выполняется весьма специфическая. Дело в том, что на улитке и лопастях со временем появляется известковый налет, служащий одной из причин заклинивания и выхода из строя электродвигателя. Применяя приведенные схемы подключения можно собственными силами собрать контролирующий блок и блок защиты. В питающей цепи достаточно выставить номинал теплового реле и подключить контакты.

Помимо этого, не менее интересна схема подсоединения теплового реле посредством токовых трансформаторов, предназначенная для применения при подключении мощных двигателей, например, поливочных систем крупных фермерских хозяйств. При добавлении в питающую цепь трансформатор следует иметь в виду параметр трансформации, равный, например, 60/5. Этот параметр означает, что при поступлении через первичную обмотку тока в 60 А, на вторичной обмотке его величина будет равна 5 А. Использование такой схемы позволит сократить расходы на приобретение комплектующих без снижения эксплуатационных характеристик. Читайте также статью ⇒ Подключение указательное реле.

Схема, при помощи которой осуществляется контроль работы посредством трансформаторов тока

Красным цветом на схеме указаны трансформаторы тока, подключающиеся к амперметру и реле контроля, для визуального представления о проходящих в цепи процессов. Подключение трансформатора выполняется по схеме «звездочка» с одной общей точкой.

Обзор моделей

В таблице приведен краткий сравнительный обзор моделей тепловых реле с указанием основных параметров и примерной стоимости.

Наименование модели Характеристики Примерная

РТЛ 10А Переменный ток до 660В и частотой 50Гц или 60Гц

Постоянный ток до 440В

320
РТЭ-1304 Номинальный ток 0,4-0,63 А

Частота тока 50 Гц

Напряжение 660 В

340
РТТ5-10-1 Реле перегрузки

Род тока переменный

Диапазон установок 5,00 А

490
ТРН10 Отключаемый ток: переменный — 3 А при 380 В;

270
РТК Напряжение: 220 В

440

Тепловое реле перегрузки РТЛ-1010М с уровнем пыле- и влагозащиты IP20

Ошибки при установке

  • Главной ошибкой неопытных мастеров является приобретение и установка реле с параметрами, не подходящими к параметрам электродвигателя. Необходимо внимательно ознакомиться с описанием товара и его характеристиками, приведенными в паспорте устройства.
  • Также при подборе и установке реле часто не учитывается температура внешнего воздуха при эксплуатации устройства. Слишком высокая температура может являться причиной частых срабатываний.
  • Еще одна серьезная ошибка — слишком плотное затягивание контактов устройства при помощи отвертки. При выполнении этой работы следует проявить осторожность, чтобы не вывести реле из строя.

Как самостоятельно подключить тепловое реле — обзор схем

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:

Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314:

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98. На картинке ниже структурная схема обозначения по ГОСТу: Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы. Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

Схема подключения теплового реле и его основные функции

Для защиты электродвигателя от недопустимых длительных токовых перегрузок, которые могут возникнуть при увеличении нагрузки на вал или потери одной из фаз применяется тепловое защитное реле. Также защитное реле защитит обмотки от дальнейшего разрушения при возникшем междувитковом замыкании.

Тепловым данное реле (сокращенно ТР) называют из-за принципа действия, который схож с работой автоматического выключателя, в котором изгибающиеся при нагреве электрическим током биметаллические пластины разрывают электрическую цепь, надавливая на спусковой механизм.

Особенности теплового реле

Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.

Тандем контактора и теплового реле

Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.

Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.

Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.

Нормально разомкнутые и нормально замкнутые контакты

Характеристики теплового реле

Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:

  • Номинальный ток защиты;
  • Предел регулировки уставки тока срабатывания;
  • Напряжение силовой цепи;
  • Количество и тип вспомогательных контактов управления;
  • Мощность коммутации контактов управления;
  • Порог срабатывания (коэффициент отношения к номинальному току)
  • Чувствительность к асимметричности фаз;
  • Класс отключения;

Схема подключения

В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).

Схема подключения ТР к контактору в магнитном пускателе

Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.

Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.

В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».

Тепловое реле в схеме реверсивного подключения контакторов

Элементы подключения, управления и настройки ТР

По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).

На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.

Кнопка «Стоп» служит для ручного выключения устройства защиты.

Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.

Управление повторным взводом

Уставка тока срабатывания позволяет сделать выбор значения перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.

Регулировка уставки срабатывания относительно метки

При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.

Графики времятоковой характеристики

Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.

Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.

Также у некоторых тепловых реле имеется флажок срабатывания защиты.

Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,

Защита настроек и маркировка

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.

Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:

    Устанавливаемые рядом с магнитным пускателем, и подключаемые при помощи перемычек (ТРН, РТТ).

Реле РТТ, подключенное при помощи жестких пластинчатых перемычек

Монтируемые непосредственно на контактор магнитного пускателя (современные модели).

Реле устанавливается непосредственно на контакторе

Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.

Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.

Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.

Элемент крепежа на корпусе теплового реле Специальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».

ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.

Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.

Если убрать рычаги, то будут видны контактные группы теплового реле.

Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.

Тепловое реле: принцип работы, виды, схема подключения + регулировка и маркировка

Долговечность и надежность в эксплуатации любой установки с электрическим двигателем зависит от различных факторов. Однако в значительной мере на срок службы мотора влияют токовые перегрузки. Чтобы их предупредить подключают тепловое реле, защищающее основной рабочий орган электромашины.

Мы расскажем, как подобрать устройство, предсказывающее назревание аварийных ситуаций с превышением максимально допустимых показателей тока. В представленной нами статье описан принцип действия, приведены разновидности и их характеристики. Даны советы по подключению и грамотной настройке.

Зачем нужны защитные аппараты?

Даже если электропривод грамотно спроектирован и используется без нарушения базовых правил эксплуатации, всегда остается вероятность возникновения неисправностей.

К аварийным режимам работы относят однофазные и многофазные КЗ, тепловые перегрузки электрооборудования, заклинивание ротора и разрушение подшипникового узла, обрыв фазы.

Функционируя в режиме повышенных нагрузок, электрический двигатель расходует огромное количество электроэнергии. А при регулярном превышении показателей номинального напряжения оборудование интенсивно нагревается.

В результате быстро изнашивается изоляция, что приводит к значительному снижению эксплуатационного срока электромеханических установок. Чтобы исключить подобные ситуации, в цепи электрического тока подключают реле тепловой защиты. Их основная функция – обеспечить нормальный режим работы потребителей.

Они отключают мотор с определенной выдержкой времени, а в некоторых случаях – мгновенно, чтобы предотвратить разрушение изоляции или повреждение отдельных частей электроустановки.

Токовое реле постоянно защищает электрический двигатель от обрыва фазы и технологических перегрузок, а также торможения ротора. Это главные причины, из-за которых возникают аварийные режимы

С целью не допустить понижение сопротивления изоляции задействуют устройства защитного отключения, ну а если поставлена задача предотвратить нарушение охлаждения, подключают специальные аппараты встроенной тепловой защиты.

Устройство и принцип работы ТР

Конструктивно стандартное электротепловое реле представляет собой небольшой аппарат, который состоит из чувствительной биметаллической пластины, нагревательной спирали, рычажно-пружинной системы и электрических контактов.

Биметаллическую пластину изготовляют из двух разнородных металлов, как правило, инвара и хромоникелевой стали, прочно соединенных вместе в процессе сварки. Один металл обладает большим температурным коэффициентом расширения, чем другой, поэтому нагреваются они с разной скоростью.

При токовой перегрузке незафиксированная часть пластины прогибается к материалу с меньшим значением коэффициента теплового расширения. Это оказывает силовое воздействие на систему контактов в защитном устройстве и активирует отключение электроустановки при перегреве.

В большинстве моделей механических тепловых реле есть две группы контактов. Одна пара – нормально разомкнутые, другая – замкнутые постоянно. Когда срабатывает защитное устройство, в контактах меняется состояние. Первые замыкаются, а вторые становятся разомкнутыми.

В электронных ТР задействуют специальные датчики и чувствительные зонды, реагирующие на повышение тока. В микропроцессоре таких защитных устройств запрограммированы параметры, определяющие ситуации, когда необходимо отключать подачу электропитания

Ток детектирует интегрированный трансформатор, после чего электроника обрабатывает полученные данные. Если значение тока в настоящий момент времени больше, чем уставка, импульс мгновенно передается прямо на выключатель.

Размыкая внешний контактор, реле с электронным механизмом блокирует нагрузку. Само тепловое реле для электродвигателя устанавливается на контактор.

Биметаллическая пластина может быть нагрета непосредственно – за счет воздействия пикового тока нагрузки на металлическую полосу или косвенно, при помощи отдельного термоэлемента. Нередко эти принципы объединяют в одном аппарате тепловой защиты. При комбинированном нагреве прибор имеет лучшие рабочие характеристики.

После остывания пластина возвращается в исходное состояние. Коммутирующие контакты автоматически замыкаются либо нужно принудительно приводить их в замкнутое состояние

Базовые характеристики токового реле

Основной характеристикой коммутатора тепловой защиты является выраженная зависимость времени срабатывания от протекающего по нему тока — чем больше величина, тем быстрее он сработает. Это свидетельствует об определенной инерционности релейного элемента.

Направленное перемещение частиц-носителей заряда через любой электроприбор, циркуляционный насос и электрокотел, генерирует тепло. При номинальном токе его допустимая длительность стремится к бесконечности.

А при значениях, превышающих номинальные показатели, в оборудовании повышается температура, что приводит к преждевременному износу изоляции.

Обрыв цепи мгновенно блокирует дальнейший рост температурных показателей. Это дает возможность предупредить перегрев двигателя и предотвратить аварийный выход из строя электрической установки

Номинальная нагрузка самого мотора – ключевой фактор, определяющий выбор прибора. Показатель в интервале 1,2-1,3 обозначает успешное срабатывание при токовой перегрузке в 30% на временном отрезке в 1200 секунд.

Продолжительность перегрузки может негативно сказаться на состоянии электрооборудования — при кратковременном воздействии в 5-10 минут нагревается только обмотка мотора, которая имеет небольшую массу. А при длительных нагревается весь двигатель, что чревато серьезными поломками. Или вовсе может потребоваться замена сгоревшего оборудования новым.

Чтобы максимально уберечь объект от перегрузки, следует конкретно под него использовать реле тепловой защиты, время срабатывания которого будет соответствовать максимально допустимым показателям перегрузки конкретного электродвигателя.

На практике собирать реле контроля напряжения под каждый тип мотора нецелесообразно. Один релейный элемент задействуют для защиты двигателей различного конструктивного исполнения. При этом гарантировать надежную защиту в полном рабочем интервале, ограниченном минимальной и максимальной нагрузкой, невозможно.

Повышение показателей тока не сразу приводит к опасному аварийному состоянию оборудования. Прежде чем ротор и статор нагреются до предельной температуры, пройдет некоторое время

Поэтому нет крайней необходимости в том, чтобы защитное устройство реагировало на каждое, даже незначительное повышение тока. Реле должно отключать электродвигатель только в тех случаях, когда есть опасность быстрого износа изоляционного слоя.

Виды реле тепловой защиты

Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.

ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок. Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.

РТЛ. Обеспечивают двигателям защиту в таких случаях:

  • при выпадении одной из трех фаз;
  • асимметрии токов и перегрузок;
  • затянутого пуска;
  • заклинивания исполнительного механизма.

Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.

РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.

РТТ могут быть использованы в качестве комплектующих частей в различных схемах управления электроприводами, а также для интеграции в пускатели серии ПМА

ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.

РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/автоматическими выключателями.

Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.

Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.

РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.

Чтобы обеспечить надежную работу электрооборудования, релейный элемент должен обладать такими качествами, как чувствительность и быстродействие, а также селективность

Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания.

Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.

Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.

Подключение, регулировка и маркировка

Коммутационный прибор перегрузки, в отличие от электрического автомата, не разрывает силовую цепь непосредственно, а лишь подает сигнал на временное отключение объекта при аварийном режиме. Нормально включенный контакт у него работает как кнопка «стоп» контактора и подсоединяется по последовательной схеме.

Схема подключения устройств

В конструкции реле не нужно повторять абсолютно все функции силовых контактов при успешном срабатывании, поскольку оно подключается непосредственно к МП. Такое исполнение позволяет существенно сэкономить материалы для силовых контактов. Намного легче в управляющей цепи подключить малый ток, чем сразу отключать три фазы с большим.

Во многих схемах подключения теплового реле к объекту используют постоянно замкнутый контакт. Его последовательно соединяют с клавишей «стоп» пульта управления и обозначают НЗ – нормально замкнутый, или NC – normal connected.

Разомкнутый контакт при такой схеме может быть использован для инициализации срабатывания тепловой защиты. Схемы подсоединения электромоторов, в которых подключено реле тепловой защиты, могут значительно отличаться в зависимости от наличия дополнительных устройств или технических особенностей.

В стандартной простой схеме ТР подключают к выходу низковольтного пускателя на электрический двигатель. Дополнительные контакты прибора в обязательном порядке соединяют последовательно с катушкой пускателя

Это обеспечит надежную защиту от перегрузок электрооборудования. В случае недопустимого превышения предельных значений тока релейный элемент разомкнет цепь, моментально отключая МП и двигатель от электропитания.

Подключение и установку теплового реле, как правило, производят вместе с магнитным пускателем, предназначенным для коммутации и запуска электрического привода. Однако есть виды, которые монтируют на DIN-рейку или специальную панель.

Тонкости регулировки релейных элементов

Одним из главных требований к устройствам защиты электродвигателей является четкое действие аппаратов при возникновении аварийных режимов работы мотора. Очень важно правильно его подобрать и отрегулировать настройки, поскольку ложные срабатывания абсолютно недопустимы.

Электротепловое реле, которое оптимально подходит к конкретному типу двигателя по всем техническим параметрам, способно обеспечить надежную защиту от перегрузок по каждой фазе, предотвратить затяжной старт установки, не допустить аварийных ситуаций с заклиниванием ротора

Среди преимуществ использования токовых элементов защиты также следует отметить довольно высокую скорость и широкий диапазон срабатывания, удобство монтажа. Чтобы обеспечить своевременное отключение электромотора при перегрузке, реле тепловой защиты необходимо настраивать на специальной платформе/стенде.

В таком случае исключается неточность из-за естественного неравномерного разброса номинальных токов в НЭ. Для проверки защитного устройства на стенде применяется метод фиктивных нагрузок.

Через термоэлемент пропускают электрический ток пониженного напряжения, чтобы смоделировать реальную тепловую нагрузку. После этого по таймеру безошибочно определяют точное время срабатывания.

Настраивая базовые параметры, следует стремиться к таким показателям:

  • при 1,5-кратном токе устройство должно отключать двигатель через 150 с;
  • при 5…6-кратном токе оно должно отключать мотор через 10 с.

Если время срабатывания не соответствует норме, релейный элемент необходимо отрегулировать посредством контрольного винта.

Для корректной работы обязательно нужно настроить прибор на наибольший допустимый электрический ток двигателя и температуру воздуха

Это делают в тех случаях, когда значения номинального тока НЭ и мотора отличаются, а также если температура окружающей среды ниже номинальной (+40 ºC) более, чем на 10 градусов по шкале Цельсия.

Ток срабатывания электротеплового коммутатора уменьшается с повышением температуры вокруг рассматриваемого объекта, так как нагрев биметаллической полосы зависит от этого параметра. При существенных отличиях необходимо дополнительно отрегулировать ТР или подобрать более подходящий термоэлемент.

Резкие колебания температурных показателей сильно влияют на работоспособность токового реле. Поэтому очень важно выбирать НЭ, способный эффективно выполнять основные функции с учетом реальных значений.

ТР рекомендовано размещать в одном помещении с защищаемой электроустановкой. Их нельзя монтировать близко к теплогенераторам, нагревательным печам и другим источникам тепла

К реле с температурной компенсацией эти ограничения не относятся. Токовую уставку защитного аппарата можно регулировать в диапазоне 0,75-1,25х от значений номинального тока термоэлемента. Настройку выполняют поэтапно.

В первую очередь вычисляют поправку E1 без температурной компенсации:

  • Iном – номинальный ток нагрузки двигателя,
  • Iнэ – номинальный ток рабочего нагревательного элемента в реле,
  • c – цена деления шкалы, то есть эксцентрика (c=0,055 для защищенных пускателей, c=0,05 для открытых).

Следующий шаг – определение поправки E2 на температуру окружающего воздуха:

Где ta (ambient temperature) – температура внешней среды в градусах Цельсия.

Последний этап – нахождение суммарной поправки:

Суммарная поправка E может быть со знаком «+» или «-». Если в результате получается дробная величина, ее обязательно нужно округлить до целого в меньшую/большую по модулю сторону, в зависимости от характера токовой нагрузки.

Чтобы настроить реле, эксцентрик переводят на полученное значение суммарной поправки. Высокая температура срабатывания уменьшает зависимость работы защитного аппарата от внешних показателей.

Реле тепловой защиты допускает ручную плавную регулировку величины тока срабатывания устройства в пределах ±25% от значения номинального тока электромеханической установки

Регулировка этих показателей осуществляется специальным рычагом, перемещение которого изменяет первоначальный изгиб биметаллической пластины. Настройка тока срабатывания в более широком диапазоне осуществляется заменой термоэлементов.

В современных коммутационных аппаратах защиты от перегрузки есть тестовая кнопка, которая позволяет проверить исправность устройства без специального стенда. Также есть клавиша для сброса всех настроек. Обнулить их можно автоматически или вручную. Кроме того, изделие комплектуют индикатором текущего состояния электроприбора.

Маркировка электротепловых реле

Защитные аппараты подбирают в зависимости от величины мощности электрического двигателя. Основная часть ключевых характеристик скрыта в условном обозначении.

Так выглядит маркировка тепловых реле завода КЭАЗ. Важно при выборе обратить внимание на значение номинального тока рассматриваемой модели, чтобы оно было достаточным

Акцентировать внимание следует на отдельных моментах:

  1. Диапазон значений токов уставки (указан в скобках) у разных производителей отличается минимально.
  2. Буквенные обозначения конкретного типа исполнения могут различаться.
  3. Климатическое исполнение нередко подается в виде диапазона. К примеру, УХЛ3О4 нужно читать так: УХЛ3-О4.

Сегодня можно купить самые разные вариации прибора: реле для переменного и постоянного тока, моностабильные и бистабильные, аппараты с замедлением при включении/отключении, реле тепловой защиты с ускоряющими элементами, ТР без удерживающей обмотки, с одной обмоткой или несколькими.

Эти параметры не всегда отображены в маркировке устройств, но обязательно должны быть указаны в техпаспорте электротехнических изделий.

С устройством, разновидностями и маркировкой электромагнитного реле ознакомит следующая статья, с которой мы рекомендуем ознакомиться.

Выводы и полезное видео по теме

Устройство и принцип функционирования токового реле для эффективной защиты электродвигателя на примере устройства РТТ 32П:

Правильная защита от перегрузки и обрыва фаз – залог длительной безотказной работы электрического мотора. Видео о том, как реагирует релейный элемент в случае нештатной работы механизма:

Как подсоединить устройство тепловой защиты к МП, принципиальные схемы электротеплового реле:

Реле тепловой защиты от перегрузок – обязательный функциональный элемент любой системы управления электроприводом. Оно реагирует на ток, который проходит на двигатель, и активируется, когда температура электромеханической установки достигает предельных значений. Это дает возможность максимально продлить срок эксплуатации экологически безопасных электродвигателей.

Пишите, пожалуйста, комментарии в находящемся ниже блоке. Расскажите, как вы выбирали и настраивали тепловое реле для собственного электромотора. Делитесь полезными сведениями, задавайте вопросы, размещайте фотоснимки по теме статьи.

Тепловое реле принцип работы, виды, схема подключения регулировка и маркировка

Что такое реле краткий экскурс в историю

Термин пришел из английского языка, от слова «reley», обозначавшим в старину смену почтовых лошадей, а позднее передачу эстафеты в спортивных состязаниях. Существует две версии создания такого устройства. Согласно первой реле изобрел русский ученый П.Л. Шиллинг в начале 30-х годов прошлого столетия. Это была основная составляющая часть в разработанном им телеграфе. Однако большая часть историков склоняется к тому, что прародителем реле стал американец Джорж Генри. Некоммутационное устройство, основывавшееся на электромагнитном принципе действия, получило распространение в 1937 году. Именно тогда поступил в производство первый телеграф.

Какая из этих версий правильная, сейчас уже сказать нельзя. Возможно, как часто это бывает, ученые разрабатывали устройство параллельно, не зная об изобретениях друг друга. Об этом говорит и то, что историками называется один и тот же промежуток времени появления реле – 1931-1935 годы.

Это устройство отключает напряжение при перегрузке сети по мощности, сберегая электропроводку

Общие сведения об устройстве

Перед тем как устанавливать токовое реле, необходимо подробно изучить его составные части, принцип действия и разновидности. Вся эта информация поможет выбрать максимально эффективный вариант для каждого конкретного устройства.

Это защитное приспособление считается одним из наиболее эффективных и надёжных. Свою популярность оно получило благодаря простой конструкции и лёгкости установки. Реле качественно выполняет свои функции и помогает предотвратить поломку оборудования в случае возникновения аварийной ситуации.

Реле тока состоит из следующих элементов:

  • электромагнит, имеющий один или несколько участков с воздушным зазором;
  • катушка;
  • пружина;
  • возвратная пружина;
  • колодка;
  • полюсный наконечник;
  • якорь;
  • корончатая гайка;
  • регулировочный винт;
  • контакты.

Принцип действия

Токовое реле, как и любая другая защитная конструкция, используется для аварийного отключения цепи от источника питания. Оно помогает продлить срок службы оборудования и избежать негативного воздействия различных факторов.

Принцип работы устройства:

  1. Регулируется величина тока срабатывания путём изменения силы натяжения возвратной пружины. Делается это при помощи корончатой гайки и винта, определяющего величину воздушного зазора в электромагните.
  2. Катушка подключается к цепи возбуждения аппарата, на котором установлено реле минимального тока.
  3. Как только ток в цепи достигнет величины срабатывания (минимально допустимого значения), сила притяжения якоря к полюсному наконечнику станет больше противодействующей силы пружины, закреплённой в колодке.
  4. Всё это приведёт к включению приспособления, а также замыканию и размыканию контактов.

Критерии выбора реле

На рынке представлено много моделей различных производителей, но выбор определяет техническое задание, основанное на условиях эксплуатации оборудования. В первую очередь, учитывается величина токовой нагрузки, современные изделия предусматривают несколько вариантов крепления, на плоских поверхностях и дин – рейках в распределительных шкафах. Некоторые образцы имеют большое количество опций и преимуществ:

  • малые габариты,
  • легко регулируемый широкий диапазон пороговых значений,
  • световую и звуковую индикацию при срабатывании;
  • Цифровую индикацию значений различных параметров на жидкокристаллическом или светодиодном дисплее.

При выборе изделия необходимо учитывать условия размещения, климатический фактор и степень защищенности реле. В зависимости от модели и количества опций реле может иметь большое количество технических характеристик, но есть основные, которые обязательно характеризуют все токовые реле. Читайте также статью ⇒

Различные способы коммутации контакта

Слаботочными можно называть поляризованные переключатели по объемам коммутируемой мощности. Через контакты реле переменного тока для 24 вольт проходит энергия меньше нескольких десятков миллиампер. Почти во всех видах устройств такого типа предусмотрен «перекидной» контакт. Для изделий на 24 В мощности характерна пружинная система якоря.

Такие переключатели могут разделяться на два основных вида по методу коммутации:

  • После снятия управляющего напряжения обмотки контакты размыкаются. Доступны три основных положения для якоря такого переключателя;
  • После снятия мощности обмоток состояние коммутации запоминается.

Для надежной работы источников электроэнергии в авиации используется специально разработанный поляризованный силовой переключатель.

Виды РМТ

Токовые реле разделяют по способу подключения:

  • Первичные включаются в разрыв цепи напрямую контактами коммутации и токовой катушкой, такие приборы используются в сетях с напряжением 12,24, 220, 380 до 1000В
  • Вторичные используются в сетях с высоким напряжением, так как токи большие, они подключаются, в разрыв через трансформатор тока. Магнитная катушка подсоединяется последовательно в разрыв вторичной обмотки трансформатора, где величина тока пропорциональна току первичной обмотки, но в десятки раз меньше. При достижении порогового значения коммутационные контакты размыкают цепь, подключаемую к первичной обмотки трансформатора.

Вторичные реле делятся по способу измерения величины тока и принципу работы механизма переключения:

  • Индукционные с трансформатором тока;
  • Электромагнитные реле с катушкой и сердечником;
  • Дифференциальные работают по принципу сравнения величины тока на участках до нагрузки и после нее. При нормальной работе эти токи равны, коротком замыкании или утечке по различным причинам они отличаются, тогда нагрузка отключается от источника питания;
  • Электронные работают на полупроводниках, при превышении установленного порога величины тока p-n-p переходы закрываются и нагрузка обесточивается.

Каждый вид имеет свои особенности подключения в цепи с различными нагрузками, это зависит от конструкции реле, функционального назначения схемы, величины тока и вида приборов нагрузки.

Назначение и принцип работы фотореле

Фотореле – это другими словами говоря, реле управления освещением. В бытовых электросетях оно применяется, как правило, для автоматического включения освещения при начале сумраков.

Оно применяется, например, для включения освещения участка перед частным домом или же вообще всего приусадебного участка; включать освещение декоративных элементов, как фонтаны, аквариумы и так далее.

Это реле может управлять не только группами света, но и других приборов, которые эксплуатируются в зависимости от освещенности времени суток, когда человек самостоятельно не может их включить, так как находится на работе, например. Не будем рассматривать все возможные варианты подключаемых приборов, рассмотрим лишь, какой у фотореле принцип работы, ну и схему реле соответственно.

Принцип работы фотореле (реле освещения) элементарной разновидности сводится к тому, чтобы замыкать/размыкать контролируемый участок цепи, основываясь на показателях освещенности. Таким образом, исполнительный механизм в фотореле содействует со встроенным или отдельно подключающимся к нему датчиком света через блок управления или напрямую.

Этот датчик света представляет из себя так называемый «фотоблок» с чувствительным к свету фотопроводником, который при попадании на него света увеличивает/уменьшает сопротивление, тем самым, пропуская через себя больше или меньше тока. Ток от фотоблока служит показателем блоку управления, на основе которого и происходит управление исполнительным элементом.

При этом сам блок управления может регулироваться на определенный уровень освещенности и задержки времени. Что касается самого устройства замыкания/размыкания цепи, то оно может быть представлено как электромагнитное реле или же так называемый «терристорный ключ» — электронный аналог, не вмещающий в себе механических элементов.

Элементарная схема подключения сумеречного выключателя (схема подключения фотореле) вмещает в себе тиристорный ключ или электромагнитное реле, которое пропускает напряжение при подаче сигнала от фоторезистора.

При этом есть две схемы, как видно, отличающиеся лишь тем, что в левой подключение фазы для подачи напряжения во внутреннюю сеть осуществляется отдельно, а во второй же используется фаза, которая питает сам прибор сумеречного освещении.

Фотореле, которое используется на правой схеме, более подходит для маломощного освещения.

Назначение и принцип работы реле контроля температуры

Реле контроля температуры является еще одной составляющей автоматических приборов управления. Оно находит свое применение, когда в быту имеются приборы, которые работают или выключаются в связи с показателями температуры окружающей среды.

Так, например, человек установил реле температуры, задал ему температуру срабатывания и ушел по делам. А в то время пока он занят, реле включает, например, группу, ведущую к обогревателю для зимнего сада на балконе при понижении температуры воздуха помещения до 18 градусов, и выключает его по достижении 25 градусов, чтобы не переусердствовать с обогревом.

В общем, назначение у этого реле может быть самое разнообразное, но рассмотрим самое главное – его принцип работы.

Принцип работы реле контроля температуры практически ничем не отличен от фотореле или звукового реле, но управляется оно в отличие от них температурой. Температура воспринимается соответственным чувствительным датчиком температуры, который представляет собой своего рода резистор, сопротивление которого меняется в зависимости от температуры его нагрева/охлаждения.

Таким образом, соответствующей величины ток поступает в электронный блок управления, где на основе этого определяется температура, сопоставляется с минимальным/максимальным заданным значением. Затем подается напряжение на исполнительный блок, который представляет из себя все тоже электромагнитное реле или же терристорный ключ и замыкает/размыкает электрическую цепь.

Схема подключения реле контроля температуры хоть и аналогична схеме подключения фотореле, однако может иметь различия в том, что датчик температуры может быть трех контактным.

Само же реле может управлять отдельной линией фазы, как показано на схеме, так и выдавать на выход ту же самую фазу, которая взята для питания его.

Техника безопасности

Токовое реле может не только защищать устройство от поломок, но и причинять вред здоровью

Это происходит в тех случаях, когда люди пренебрегают правилами техники безопасности и не берут во внимание рекомендации опытных специалистов.

Необходимые меры безопасности:

  • Любые работы по регулировке или проверке токового реле следует выполнять с соблюдением мер предосторожности.
  • Ремонтные или профилактические мероприятия имеют право проводить только высококвалифицированные сотрудники, имеющие большой опыт подобной работы.
  • Выполнять установку реле могут только люди, ознакомленные с инструкцией прибора и правилами техники безопасности.
  • Запрещается проводить ремонт при включённом в сеть устройстве. В противном случае есть высокая вероятность поражения электрическим током, который может стать причиной серьёзных проблем со здоровьем.
  • Нельзя использовать в работе устройство, имеющее видимые повреждения одного или нескольких элементов.
  • Перед включением оборудования необходимо проверить все контакты токового реле на наличие повреждений и каких-либо дефектов. В случае их обнаружения следует аккуратно устранить проблему при помощи специальных инструментов или их аналогов.
  • Любая износившаяся деталь конструкции должна быть сразу же заменена на новую.
  • Запрещается использовать защитное устройство при сильных вибрациях и чрезмерной запылённости.
  • Нельзя применять приспособление для защиты оборудования, работающего в помещениях с высокой влажностью или большой вероятностью попадания какой-либо жидкости.
  • Некоторые активные химические пары и газы способны разрушить изоляционный слой. Из-за этого не рекомендуется подключать реле в потенциально опасных помещениях.
  • Запрещено использовать защитное реле в помещениях, где хранятся легковоспламеняющиеся и взрывоопасные материалы.
  • Защитное устройство может работать только при температуре от -20 до +40 градусов по Цельсию и влажности не более 80%.
  • Все составные части конструкции должны соответствовать стандартам и быть правильно промаркированными. Если используется какой-либо несоответствующий элемент, то может возникнуть аварийная ситуация, которая повлечёт за собой множество дополнительных проблем.

Реле минимального тока — это эффективное защитное устройство, которое помогает избежать эксплуатации оборудования при заниженных показателях в сети. При правильном использовании и соблюдении всех рекомендаций специалистов можно значительно увеличить продолжительность работы приспособления и избежать каких-либо проблем.

Описание модели РМТ 101

Данное реле современного исполнения, многофункциональное и пользуется большим спросом у потребителей, рассмотрим его технические возможности.

Функциональное назначение

Реле используется для контроля тока нагрузки на протяжении всего времени эксплуатации, приборов нагрузки с однофазным питанием. Пределы измерения тока от 0 до 100А, прибор отключает нагрузку при достижении установленного порогового значения тока. Нагрузка подключается через коммутирующие контакты реле при потребляемой мощности не более 1.75кВА. токовые нагрузки выше этого значения до 20кВА подключают через магнитные пускатели с контактами способными выдерживать нагрузку соответствующей мощности.

Органы управления реле позволяют пользователю вручную задавать:

  • Пороги срабатывания по току;
  • Время задержки отключения;
  • Время повторного включения после срабатывания;

В то же время кроме функций защиты изделие имеет дополнительные функции:

  • Цифровой амперметр измеряет и отображает токи нагрузки;
  • Ограничение токов потребления;
  • Используется реле с приоритетом выбора нагрузки.

Встроенный трансформатор тока позволяет измерять величину тока без разрыва цепи, на лицевой панели светодиодные индикаторы отображают состояние реле и в каких пределах находится ток нагрузки.

Основные технические характеристики

Питание однофазная сеть переменное напряжение 220В
Частота напряжения в сети 50 Гц
Диапазон токовых измерения 0-100А
Погрешность измерений 1%
Интервал регулировки времени включения 0 – 900 сек.
Интервал регулировки времени отключения 0 – 300 сек.
Максимальный ток коммутации
Максимально допустимое напряжение 400В
Потребляемая мощность без нагрузки 3.5Вт.
Износостойкость контактов коммутации:

— при нагрузке 8А

— при нагрузке 1А

100 тыс. срабатываний;

Сечение подключаемых проводов в сети 0.5 – 2мм2
габариты 90-52,6-69,1
крепление На дин — рейку

Конструкция позволяет функционировать изделию в любом положении в пространстве относительно поверхности земли.

Классификация

В свою очередь устройства разделяются на несколько типов измерения: первичное и вторичное. Первый тип подключается к аппарату непосредственно своими выводами. Такое подключение распространено в сетях до 1000 Вольт.

Второй тип РМТ (на фото ниже) подключается через трансформатор тока, измеряя вторичный ток, который прямо пропорционален первичному и на порядок меньше, чем в измеряемой цепи. Применяют данный тип подключения в высоковольтных сетях.

В свою очередь, реле вторичного тока подразделяются на индукционные и электромагнитные, дифференциальные, электронные. Принцип работы дифференциального типа исполнения заключается в сравнении силы тока до потребителя и после него. В нормальных условиях эта величина должна быть одинаковой. Если же параметры отличаются (например, при коротком замыкании), РМТ замыкает контакты, благодаря чему происходит отключение поврежденной линии от сети.

Примером дифференциального реле является устройство защитного отключения, которое широко применяется как в быту, так и на производстве.

Подключение и применение токовых реле

В нормальном рабочем состоянии каждое реле максимального ока должно чутко реагировать на превышение электротоком номинального значения во входной цепи, находящейся под контролем. Когда входной ток увеличивается выше допустимых пределов, происходит переключение выходных контактов, отключающих силовые приборы от электрической сети. Если в дальнейшем ток начинает снижаться и приближаться к номинальному значению, то в этом случае под действием выходного сигнала вновь происходит замыкание цепи и возобновление подачи тока.

Защитные токовые реле устанавливаются не только на промышленных объектах, но и в жилых зданиях. Практически в каждой квартире имеются бытовые приборы и устройства повышенной мощности. Одновременное включение всех таких потребителей нередко вызывает перегрузки в электрической сети. Чтобы предотвратить возникновение подобных ситуаций, все бытовые приборы разбиваются на категории приоритетных и второстепенных. В число приоритетной бытовой техники входят те приборы, для которых отключение от сети будет критичным. Подобные внезапные отключения могут привести к выходу их из строя. Второстепенные устройства могут быть отключены без какого-либо ущерба для себя. В связи с этим, реле максимального тока устанавливается таким образом, чтобы исключить любые перегрузки в питающей сети.

На схеме в качестве примера приведено устройство марки РМТ-101. Данная конструкция позволяет задавать определенное время, в течение которого нагрузка отключается, а затем подается вновь.

Эта модель обладает способностью измерения и контроля токовой нагрузки, при необходимости она может использоваться в качестве цифрового амперметра. Ток в электрической сети может измеряться, не разрывая ее. Для этих целей предусмотрен специальный датчик, встроенный в прибор. Защитное устройство РМТ-101 может подключаться к выносным трансформаторам тока. На его лицевой панели расположены светодиодные и цифровые индикаторы, с помощью которых осуществляется контроль над нагрузкой и текущим значением тока в цепи. Прибор оборудован двумя переключателями, позволяющими выставлять необходимый диапазон измерений, точность определения, а также режим индикации, отображающий текущий или максимальный ток.

Еще одной функцией РМТ-101 является его применение в качестве реле ограничения потребляемого тока. Кроме того, с его помощью может выбираться оптимально заданная нагрузка. Для работы прибора используются два основных режима – минимального и максимального тока. Переключение между режимами осуществляется специальным переключателем из двух положений.

Реле максимального тока широко применяются в промышленности. Они обеспечивают защиту мощных электрических двигателей постоянного и переменного тока и другого оборудования от возможных перегрузок. Наиболее типичным устройством, используемым во многих областях, считается прибор РЭО-401, отображенный на рисунке.

Конструкция этого защитного реле включает в себя два основных узла – электромагнитную систему и размыкающий блок-контакт. Конструкция электромагнитной системы состоит из скобы магнитопровода с ввернутой в нее трубкой. На самой трубке располагается катушка, защищенная изоляционным каркасом. Внутри трубки установлен якорь, свободно перемещающийся вдоль нее. От того, в каком положении якорь находится в трубке, зависит величина тока, при котором срабатывает прибор.

Величину тока срабатывания можно отрегулировать путем изменения положения скобы. После выполнения всех необходимых регулировок она фиксируется специально предусмотренным винтом. После срабатывания устройства, блок-контакты будут оставаться разомкнутыми до тех пор, пока не произойдет снижение тока до номинального значения. После этого якорь будет передвинут в нижнее положение, а под действием пружины контакты замкнутся. Подключение проводов осуществляется на передней части прибора.

Принцип работы

Основой принципа действия устройства является его чувствительность на увеличение токового показателя в защищаемой электролинии. Если увеличивается показатель тока, контакты переключаются, тем самым отключая электрооборудование от цепи. Когда данный параметр понижается и равняется установленному показателю, то элементы снова замыкаются и производство возобновляется.

Особенности производства реле зависит от их классификации.

Принцип действия дифференциального типа сформирован посредством сравнения токовой характеристики до нагрузки и после нее. Зачастую такой нагрузкой является трансформатор. В исправном состоянии показатель тока до и после нагрузки имеет равенство между собой. В случае аварийной ситуации, происходит дисбаланс и равенство нарушается. Реле мгновенно замыкает контакты и посылает сигналы, с целью отключения поврежденной области электрической цепи.

Защитное приспособление, которое имеет электронный тип, изготавливается на основе полупроводников. Преимуществом их является сохранение работоспособности в вибрирующих условиях.

В конструкцию электромагнитного устройства входит скоба магнитопровода. В скобу вкручена трубка с катушкой наверху. В трубке расположен якорь, который перемещается вдоль нее. При этом показатель срабатывания прибора зависит от расположения якоря.

Установочный токовый показатель регулируется посредством передвижения расположения скобы. Далее скоба закрепляется винтом. При сработке устройства контакты размыкаются, и якорь переходит в верхнюю позицию. Когда ток возвращается к первоначальному показателю, якорь переходит в нижнюю позицию, при этом контакты запираются.

Устройство реле тока

Для начала давайте разберем принцип реле тока и его устройство. На данный момент существуют электромагнитные, индукционные и электронные реле.

Мы будем разбирать устройство наиболее распространенных электромагнитных реле. Тем более, что они дают возможность наиболее наглядно понять их принцип работы.

Устройство электромагнитного реле тока

  • Начнем с основных элементов любого реле тока. Оно в обязательном порядке имеет магнитопровод. Причем, этот магнитопровод имеет участок с воздушным зазором. Таких зазоров может быть 1, 2 или более — в зависимости от конструкции магнитопровода. На нашем фото таких зазора два.
  • На неподвижной части магнитопровода имеется катушка. А подвижная часть магнитопровода закреплена пружиной, которая противодействует соединению двух частей магнитопровода.

Принцип действия электромагнитного токового реле

  • При появлении на катушке напряжения, в магнитопроводе наводится ЭДС. Благодаря этому, подвижная и неподвижная части магнитопровода становятся как два магнита, которые хотят соединиться. Не дает им это сделать пружина.
  • По мере увеличения тока в катушке, ЭДС будет нарастать. Соответственно, будет нарастать притяжение подвижного и неподвижного участка магнитопровода. При достижении определенного значения силы тока, ЭДС будет настолько велико, что преодолеет противодействие пружины.
  • Воздушный зазор между двумя участками магнитопровода начнет сокращаться. Но как говорит инструкция и логика, чем меньше воздушный зазор, тем больше становится сила притяжения, и тем с большей скоростью магнитопроводы соединяются. В результате, процесс коммутации занимает сотые доли секунды.

Существуют токовые реле разных типов исполнения

  • К подвижной части магнитопровода жестко прикреплены подвижные контакты. Они замыкаются с неподвижными контактами и сигнализируют, что сила тока на катушке реле достигла установленного значения.

Регулировка тока возврата токового реле

  • Для возврата в исходное положение, сила тока в реле должна уменьшиться как на видео. Насколько оно должно уменьшится, зависит от так называемого коэффициента возврата реле.

Оно зависит от конструкции, а также может настраиваться индивидуального для каждого реле за счет натяжения или ослабления пружины. Это вполне можно сделать своими руками.

Часто задаваемые вопросы

  1. Можно из герконовых переключателей сделать реле тока?

Можно, наматать на геркон несколько витков провода, это будет как обмотка катушки, при протекании тока, контакты геркона будут замыкаться. Но РМТ для размыкания контактов, еще придется столкнуться с трудностью расчета сечения провода и количества витков для установки нужного порога срабатывания. Герконовые контакты рассчитаны для низковольтных сетей с малыми токами. Надежнее поставить реле промышленного изготовления.

  1. Какое токовое реле лучше поставить для защиты насоса в колодце?

Это зависит от мощности потребляемой насосом и электропитания, для бытового с питанием от одной фазы с потребляемой мощностью до 3 кВт идеально подойдет МРТ- 101.

Реле тока, виды и применение


Реле тока – устройства, чаще всего используемые для сигнализации превышения тока в контролируемой цепи, а также для отключения электрических цепей, в случае возникновения перегрузок и коротких замыканий. Применяемые реже реле минимального тока, наоборот, предназначены для размыкания цепей в случае достижения в них определенного минимального его значения.

Существует много различных типов токовых реле (в дальнейшем ТР), отличающихся принципом действия и конструктивным исполнением

«Классическое» ТР представляет собой катушку с железным сердечником и подпружиненный подвижный якорь, управляющий контактами.При прохождении тока по катушке создаётся магнитное поле, под действием которого сердечник катушки намагничивается и притягивает якорь, вызывая срабатывание контактов.В отличие от реле напряжения катушка ТР содержит небольшое количество витков провода довольно большого диаметра (зависит от величины тока, на который оно рассчитано) За счёт чего и достигается небольшое падение напряжения на катушке, что важно, так как катушка включается последовательно с контролируемой цепью.Некоторые ТР имеют регулировку тока срабатывания, которая чаще всего осуществляется изменением натяжения пружины якоря. Диапазон регулировки может составлять десятки процентов

Реле переменного тока (для контроля больших токов) может быть включено через трансформатор тока.Важнейшей характеристикой ТР является время его срабатывания. У реле максимального тока, время срабатывания должно быть как можно меньше и может достигать десятков миллисекунд. Эти устройства используются для защиты от коротких замыканий.Для защиты от длительных перегрузок вместе с этими устройствами используют реле времени, осуществляющие задержку отключения защищаемой цепи. Это исключит возможные ложные срабатывания при кратковременных превышениях тока. Время срабатывания, обычно регулируется.Тепловое ТР представляет собой биметаллическую пластину с нагревательным элементом из материала с высоким удельным сопротивлением (нихром). Она состоит из двух материалов с разными коэффициентами теплового расширения. При нагревании, пластина изгибается, воздействуя на исполнительный механизм.Время срабатывания теплового ТР зависит от величины тока, превышающего номинальное значение уставки ТР. Получается это вследствие того, что чем больше ток, тем быстрее происходит разогрев биметалической пластины и время срабатывания, соответственно уменьшается.Такая характеристика в большинстве случаев является предпочтительной. Поэтому из-за простоты конструкции и надежности в работе, тепловые ТР, как и реле электромагнитного типа, получили очень широкое распространение.Трёхполюсные тепловые ТР, совместно с электромагнитными пускателями, применяются, чаще всего для защиты электродвигателей. Они имеют регулировку тока срабатывания (в пределах +/- 5-10%) кнопку возврата.Реле упомянутых типов совместно применяются и в , используемых как в быту, так и в промышленности. В корпусе автоматического выключателя размещается электромагнитное реле максимального тока для защиты от коротких замыканий и тепловое ТР для защиты от перегрузок.При установке управляющего флажка автомата в положение «включено», замыкаются контакты, включающие электрическую цепь, взводится пружина и срабатывает фиксатор, удерживающий это положение. Срабатывание любого токового реле приводит к освобождению фиксатора и под действием возвратной пружины контакты автоматического выключателя размыкаются (состояние «выключено»).Электронные ТР используется для мгновенного или с минимальной задержкой отключения оборудования при перегрузке по току. Электронная схема реле обрабатывает сигнал в соответствии с заданными характеристиками. Как правило, можно установить максимально допустимый ток и необходимое время задержки отключения при перегрузке.Кроме того, возможно и полное отключение функции контроля при пуске оборудования на некоторое время, во избежание ложных срабатывание из-за возникновения в цепи больших пусковых токов.Электронные ТР могут быть как переменного, так и постоянного тока. Их выходы, непосредственно управляющие нагрузкой, могут быть выполнены бесконтактными. Это могут быть тиристоры, симисторы, IGBT, МОП транзисторы, а так же их оптоэлектронные аналоги.ТР может входить в состав некоторых устройств (бесконтактных пускателей, регуляторов мощности и т.п.). Так, в аналоговых электроприводах это часть схемы, а в цифровых электроприводах это функция программы управления. Параметры защиты по току задаются в настройках устройства.

Назначение и принцип работы реле времени

Реле времени имеет элементарное назначение – включение или выключение линии фазового проводника с течением заданного промежутка времени. То есть человек настраивает реле на время работы, через которое оно должно разомкнуть электрическую цепь и уходит.

По истечению времени реле размыкает цепь, вследствие чего отключается прибор, который подключен к линии, управляемой данным реле. Это может быть произведено с целью экономии электроэнергии и вместе с тем за ненадобностью работы прибора после определенного периода его работы.

В общем, назначение данного прибора управления электропитанием ясно, осталось лишь разобраться с его принципом работы и рассмотреть схему, приведенную ниже.

Принцип работы реле времени состоит в том, что блок управления реле представляет собой электронный таймер, настраиваемый вручную и который с истечением заданного времени дает сигнал исполнительному механизму, который и размыкает цепь. При этом стоит заметить, что таймер может быть электронным (что чаще всего встречается в современных реле времени) или механическим (в большей степени старого образца реле).

Электронный таймер в реле времени представлен как микросхема, которая программируется разными импульсами, которые возникают в результате нажатия клавиш на панели управления реле контроля времени.

Работа реле времени с таймером механического образца ничем не отличается, а сам механизм таймера такого реле имеет контакты, которые находятся в определенном положении (сомкнуты или разомкнуты). При повороте регулятора механизма таймера времени они меняют свое положение, то бишь размыкаются или мыкаются, тем самым, соответственно, замыкая или размыкая электрическую цепь.

Со временем они становятся в первоначальную позицию, время зависит от того, на сколько градусов выполнен поворот регулятора (чем больше повернуть регулятор, тем больше нужно будет времени для возвращения в первоначальную позицию).

Схема подключения реле времени может иметь выход для подключения к компьютеру, в таком случае это реле называется интеллектуальным и может иметь до 40 групп для подключения приборов.

Это может давать расширенные возможности по программированию режимов времени, чего нельзя было добиться вручную, орудуя лишь парой кнопок и имея в наличии всего пару выходов групп на панели управления данным устройством автоматического управления цепью.

В этой статье мы рассмотрели основные виды реле, которые применяются в бытовых электросетях. Были вкратце раскрыты основные положения относительно принципа работы реле, а также схемы их подключения. Однако, не были рассмотрены многие технические подробности, так как статья и без того объемная.

Особенности подключения

С этой работой может справиться практически каждый домашний мастер. Чтобы прибор начал функционировать, на входные клеммы достаточно подать питающее напряжение, соблюдая полярность. В качестве примера можно рассмотреть подключение твердотельного реле к системе освещения:

  • В точке монтажа ТТР нужно сделать разрыв фазного проводника.
  • Устройство подключается в разрыв клеммами для коммутации.
  • На управляющие контакты в соответствии с полярностью подается питающее напряжение.

Следует обратить внимание на то, что управляющая цепь подключается через пусковую кнопку. Достаточно кратковременной подачи напряжения для открытия полупроводникового элемента конструкции и последующего замыкания цепи

Чаще всего твердотельные реле монтируются на DIN-линейку.

При выборе прибора необходимо ориентироваться технические характеристики цепи питания, а также условия эксплуатации реле. Подключение ТТР к цепи не должно вызвать серьезных проблем.

Основные рабочие характеристики

Промышленное реле на 24В

Итак, реле переменного тока является промежуточным элементом, который приводит в действие управляемую электрическую цепь.

Для этого устройства характерны следующие параметры:

  • Мощность срабатывания (Р ср – измеряется в Ваттах) – ток минимальной мощности, который должен подаваться на реле для его нормальной активации. Номинально этот параметр подбирается согласно общим конструктивным и электрическим параметрам реле.
  • Мощность управления (Р упр – измеряется в Ваттах) – максимальная мощность тока, которую способно передать реле в коммутируемой сети. Данное значение определяется параметрами рабочих контактов реле.

Совет! Не сложно догадаться, что при выборе реле для сети ориентируются на названные параметры, которые для определенных конструкций являются постоянными.

  • Время срабатывания (Т ср – измеряется в секундах) – разница во времени от момента поступления сигнала на управляющий контакт до смыкания или размыкания контактов.
  • Допустимая разрывная мощность (Р р – измеряется в Ваттах) – этот параметр можно встретить в сильноточных реле. Он обозначает мощность при определенном токе, которая при разрыве не позволит создать устойчивую электрическую дугу.

Как работает реле

Диаграмма работы реле во времени

Для управляющей цепи и самого реле характерна некоторая инертность, из-за чего входной ток на реле растет и убывает не мгновенно, а изменяется в некоторых пределах в течение времени, что прекрасно видно на показанной выше схеме, из которой так же понятно, что рабочий цикл состоит из трех этапов:

Давайте в качестве примера, для понимания основных принципов возьмем электромагнитное реле постоянного тока.

Назад в будущее: реле из 1983 года

  • Внутри такого реле имеется катушка индуктивности, благодаря которой и происходит постепенное изменение параметров тока. Сама же работа реле для каждого этапа складывается из определенных временных отрезков.
  • Срабатывание – имеет два таких интервала: время трогания (tтр) и время на движение якоря(tдв). То есть Т ср = tтр+tдв – все просто.
  • Работа – также два участка, которые обозначены на временной линии отрезками АВ и ВС. На первом этапе ток продолжает еще какое-то время расти, пока не будет достигнуто установленное значение, что позволяет обеспечить надежное притяжение между якорем и сердечником, препятствующим вибрации якоря. На втором участке никаких изменений величины тока не происходит.
  • Возврат – аналогично, 2 участка. На первом происходит отпускание реле, а на втором – возврат в исходное состояние. На протяжении всего периода сила тока падает.

Трехфазное реле переменного тока

Прочие характеристики

Помимо перечисленного, у реле разных типов в ходу следующие параметры:

    Коэффициент возврата (Kb) – отношение отпускающего тока к срабатывающему. Обычно данное значение варьируется от 0,4 до 0,8. Рассчитывается по формуле: Iот/Iср Полезное видео по теме

Устройство и принцип функционирования токового реле для эффективной защиты электродвигателя на примере устройства РТТ 32П:

Правильная защита от перегрузки и обрыва фаз – залог длительной безотказной работы электрического мотора. Видео о том, как реагирует релейный элемент в случае нештатной работы механизма:

Как подсоединить устройство тепловой защиты к МП, принципиальные схемы электротеплового реле:

Реле тепловой защиты от перегрузок – обязательный функциональный элемент любой системы управления электроприводом. Оно реагирует на ток, который проходит на двигатель, и активируется, когда температура электромеханической установки достигает предельных значений. Это дает возможность максимально продлить срок эксплуатации экологически безопасных электродвигателей.

Ошибки, которые допускаются при монтаже и эксплуатации РМТ

  • В условиях высокогорья электромагнитные конструкции могут давать сбои в работе. Это связано с изменением атмосферного давления. Внимательно смотрите характеристики, обычно допускается эксплуатация до 2000м над уровнем моря. В авиационной технике этот фактор обязательно учитывается.
  • На конструкциях с большим количеством коммутационных контактов пластины расположены, очень близко друг к другу. Поэтому припайке обязательно надевайте изолирующий кембрик или термоусадочную трубку. Особенно если реле используется в условиях вибрации, это исключит возможного замыкания.

Пример качественной изоляции контактов на реле

Бесконтактные и поляризованные агрегаты

Также разрабатываются поляризованные бесконтактные переключатели. Они представляют собой электронные устройства, идентичные поляризованным электромагнитным установкам по функциональности, но собранные совсем по другому принципу. Это полупроводниковые электронные образцы, разработанные по технологии магнитных усилителей. Подобные агрегаты великолепно проявляют себя в условиях мощных ударов, вибраций.

Приборы собираются по принципу магнитных усилителей и имеют несколько обмоток. Реактивное сопротивление отрицательным или положительным полуволнам на вторичной обмотке изменяется при подмагничивании сердечников постоянным напряжением определенного направления. Зачастую обыкновенным неполяризованным устройством усиливается изменение вторичного напряжения.

Схема устройства электромагнитного реле

Схема устройства реле такова. Подвижный стальной якорь находится внутри статичной катушки индуктивности, при подаче напряжения на которую возникает электромагнитное поле, притягивающее якорь. Различной электроникой или механикой регулируется частота и продолжительность подачи напряжения на обмотку. Частота импульсов составляет до 3600 в час.

Более старое устройство мгновенного действия

Структура электромагнитного реле делится на три составных элемента:

  1. Первичный. Преобразует импульс, поступающий с системы управления в электромагнитную силу. Иными словами – обмотка катушки индуктивности.
  2. Промежуточный. Состоит из различных деталей. Его задача – приведение в работу самого исполнительного механизма. Проще говоря – это якорь или иной подвижный элемент, оснащенный возвратной пружиной и контактами.
  3. Исполнительный. Выполняет работу по передаче воздействия на силовое оборудование. Эту роль играет контактная группа силовой части.

Такие устройства устанавливаются вместе с остальной автоматикой в распределительном щите

История создания

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830-1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

Первое реле Дж. Генри

Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Первое реле Морзе

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

Тепловая защита электродвигателя. Электротепловое реле.

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Что такое тепловое реле и для чего оно нужно?

Конструкция

Начнем с того, что расскажем, из чего состоит реле тепловой защиты. В основу работы РТ заложено явление описано физическим законом Джоуля-Ленца:

Количество тепла выделяемому на участке электрической цепи пропорционально квадрату силы тока и сопротивления данного участка.

Данное явление с успехом используется в тепловом расцепителе. Короткий участок цепи, выполняющий роль теплового излучателя, намотан спиралью на изолятор. Весь ток, проходящий через электрическую машину, проходит через данный участок. Непосредственно возле спирали стоит биметаллическая пластина, которая при нагревании изгибается и воздействует на контактную группу. Пластина состоит из двух разнородных металлов, имеющих разный коэффициент расширения при нагреве, объединенных в один элемент.

На фото ниже изображен разрез действующего аппарата. Через проводники проходит три фазы питания на электрический двигатель. Обмотка нагрева расположена сверху биметаллической пластины для уменьшения ложного срабатывания от внешнего воздействия. Пластины упираются в подвижную планку, которая толкает механизм расцепителя. Сверху расположен пружинный регулятор токовой установки, для точной настройки пределов срабатывания, и две группы контактов (открытые NO и закрытые NC).

Принцип работы

Как выглядит тепловое реле вы узнали, теперь идем дальше и расскажем, как работает данное устройство. Как мы уже сказали ранее, РТ защищает двигатель от продолжительной перегрузки.

На каждом электродвигателе есть табличка с паспортными данными, где указан номинальный рабочий ток. Существуют механизмы, в работе которых возможно превышение рабочего тока, как во время запуска, так и в рабочем процессе. При длительном воздействии таких перегрузок, происходит перегрев обмоток, разрушение изоляции, и выход из строя самого двигателя.

Данное реле тепловой защиты предназначено для воздействия на цепи управления, путем отключения схемы, размыканием контактов, или подачей сигнала предупреждения дежурному персоналу замыкая контакты. Устройство устанавливается после пускового контактора в силовую цепь перед электродвигателем для того, чтобы контролировать проходящий ток.

Установку параметров производят в большую сторону от номинального тока двигателя, на величину 10-20 %, согласно паспортным данным. Отключение машины происходит не сразу, а по прошествии определенного времени. Все зависит от температуры окружающей среды и тока перегрузки, и может колебаться от 5 до 20 минут. Неправильно выбранный параметр приведет к ложному срабатыванию или игнорированию перегруза и выходу из строя оборудования.

Графическое обозначение устройства на схеме по ГОСТ:

Более подробно узнать о том, как устроено тепловое реле и как оно работает, вы можете, просмотрев данное видео:

Назначение

Сразу же хотелось бы сказать о том, что существуют различные виды и типы тепловых реле и соответственно область применения каждой классификации своя собственная. Вкратце поговорим о назначении основных разновидностей устройств.

РТЛ — трехфазное, предназначено для защиты электродвигателя от перегрузок, перекоса фаз, затянутого пуска или заклинивания ротора. Крепятся на контакты пускатели ПМЛ или как самостоятельное устройство с клеммами КРЛ.

РТТ — на три фазы, предназначены для защиты короткозамкнутых двигателей от токов перегрузки, перекоса фаз, заклинивания ротора двигателя, затянутого запуска механизма. Может крепиться на ПМА и ПМЕ пускатели, а также самостоятельно устанавливаться на панели.

РТИ — защищают электромотор от перегрузки, асимметрии фаз, длинного пуска и заклинивания машины. Трехфазное тепловое реле, крепится на пускатели серии КМТ и КМИ.

ТРН — двухфазное реле, контролирует режим работы и пуска, имеет только ручной возврат контактов, работа устройства мало зависит от температуры окружающей среды.

Твердотельные трехфазное реле, не имеют подвижных деталей, не зависят от состояния окружающей среды, применяют во взрывоопасных местах. Следит за током нагрузки, разгоном, обрывом фаз, заклиниванием механизма.

РТК — контроль температуры происходит щупом, расположенным в корпусе электроустановки. Представляет собой термо реле, и контролирует только один параметр.

РТЭ — реле плавления сплава, электропроводящий проводник выполнен из сплава металла, при определенной температуре плавится и механически разрывает цепь. Данное тепловое реле встраивается непосредственно в контролируемое устройство.

Как видно из нашей статьи, существует большое разнообразие контроля за состоянием электроустановок, отличающихся типом и внешним видом, но одинаково выполняющих защиту электрооборудования. Это и все, что хотелось рассказать вам об устройстве, принципе действия и назначении тепловых реле. Надеемся, информация была для вас полезной и интересной!

Будет интересно прочитать:

Тепловое реле, принцип работы и схема подключения

Тепловые реле — это электрические устройства, основным назначением которых является защита двигателя от избыточной нагрузки и, как следствие, перегрузки системы в целом. На сегодняшний день наиболее распространенными являются следующие типы тепловых реле: ТРН, РТИ, РТТ, РТЛ и РТЭ. Необходимость применения тепловых реле обусловлена тем, что долговечность любого оборудования напрямую зависит от того, как часто оно бывает перегружено. Так, при регулярном превышении номинального напряжения происходит нагрев оборудования, что приводит к старению изоляции и, как следствие снижает эксплуатационный срок установок.

Схема подключения теплового реле

Схемы подключения электродвигателей, в которые включено тепловое реле, могут существенно отличаться между собой, в зависимости от технической необходимости и наличия различных устройств. Тем не менее, в каждой из схем тепловое реле обязательно должно подключаться последовательно с катушкой пускателя. Это обеспечивает надежную защиту от перегрузок оборудования. Так, при превышении определенного уровня потребляемого двигателем тока тепловое реле размыкает цепь, тем самым отключая магнитный пускатель и сам двигатель от источника электропитания.

Принцип работы теплового реле

Действие изделий основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.

Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.

Виды тепловых реле (РТТ, РТЛ, ТРН, РТИ, РТЭ)

Реле тепловое РТЭ-1304 0,4-0,63А EKF как и другие модели этой серии применяются в качестве комплектующих изделий в схемах управления электроприводами в цепях переменного тока напряжением 660 В, частотой 50-60 Гц и постоянного тока напряжением 440 В.

Тепловые реле РТТ применяются в тех случаях, когда требуется обеспечить эффективную защиту трехфазных асинхронных двигателей от перегрузок, длительность которых превышает допустимую (которые могут возникнуть, например, при выпадении одной из фаз). Как правило, они являются комплектующими частями в управляющих схемах электроприводов и в магнитных пускателях.

Тепловые реле РТЛ используются в тех случаях, когда требуется защитить от перегрузок по продолжительности, а также о несимметричности тока, например, при выпадении одной из фаз. Этот тип реле может устанавливаться как на пускателях, так и отдельно, при наличии клеммников.

Двухфазное тепловое реле ТРН используется, как правило, на магнитных пускателях в асинхронных двигателях. Его особенностью является возможность использования в сетях постоянного тока.

Тепловое реле РТИ выполняет те же функции, что и описанные выше, а также обеспечивает защиту от затянутого пуска. Данный тип реле обладает собственным потреблением энергии, поэтому дополнительно при его использовании рекомендуется устанавливать предохранители.

Тепловое реле

Тепловое реле (англ. thermal relay) — реле, которое реагирует на изменение тепловых величин (температуры, теплового потока и т.п.).

Существуют тепловые реле основанные на механических, электрических, оптических и акустических принципах действия.

Тепловые реле основанные на механическом принципе, используют либо линейное или объемное расширение, либо переход веществ из твердого в жидкое или из жидкого в газообразное состояние, либо изменение плотности или вязкости газов. Тепловые реле использующие линейное расширение состоят из двух стержней (или трубки и внутреннего стержня), изготовленных из материалов с различным температурным коэффициентом линейного расширения. Разность удлинений стержней (или трубки и стержня) увеличивается с помощью рычага 4, который приводит в действие подвижный контакт группы контактов 2 (см. Рис.)

Широко распространены биметаллические тепловые реле, у которых пластина, состоящая из двух слоев металла, обладающих различными коэффициентами линейного расширения, и закрепленная одним концом, изгибается свободным концом в сторону металла с меньшим коэффициентом линейного расширения. Свободный конец пластины связан с подвижным контактом, который при заданной температуре замыкает электрическую цепь. Используются связка различных металлов: латунь-инвар, сталь-инвар и т.д. Биметаллическая пластина чаще всего выполняется в виде плоской пластинки, а иногда в виде плоской или винтовой спирали.

Тепловые реле использующие объемное расширение, имеют резервуар (ампулу), наполненный жидкостью (например ртутью) или газом. Ртуть, расширяясь, поднимается по трубке, соединенной с ампулой, доходит при заданной температуре до неподвижного контакта, впаянного в трубку и замыкает управляемую цепь. При нагревании газа нагревательным элементом в резервуаре, ртуть вытесняется и размыкает контакты.

В тепловых реле использующих переход веществ (обычно металлов) из твердого состояния в жидкое, конец стержня с лопаткой, находящихся под действием пружины, вставлен в некоторый объем легкоплавкого вещества. При повышении температуры в камере до температуры плавления вещества пружина выдергивает (или поворачивает) стержень и замыкает контакт.

В тепловых реле, у которых используется переход из веществ из жидкого состояния в газообразное, имеется баллон, наполненный легкоиспаряющейся жидкостью (например хлористый этил — для температуры от 40° до 160°С и хлористый метил — от 0° до 150°С) и соединенная капиллярной трубкой (длинной до 10 м) с манометрическим элементом (коробкой с мембраной или сильфоном). Капиллярная трубка заполнена передаточной мало испаряющейся и мало сжимаемой жидкостью — смесью глицерина, этилового спирта и воды или гликоля и винного спирта. При повышении температуры баллона жидкость, заключенная в ней, испаряясь, вызывает повышение давления паров, которое через жидкость, заполняющую капиллярную трубку, передается сильфону. Последний перемещается и воздействует при этом на ртутный контакт.

Тепловые реле, использующие зависимость плотности газа от температуры, состоят из маленького насоса, засасывающего в единицу времени постоянное количество воздуха через сужение, находящееся в месте, где контролируется температура. Изменение перепада давления после сужения пропорционально контролируемой температуре.

Тепловые реле основанные на электрических принципах, используют изменение удельного сопротивления проводниковых либо полупроводниковых материалов, изменение диэлектрической постоянной или магнитной проницаемости или термоЭДС в зависимости от изменения температуры.

Тепловые реле работающие на изменении удельного сопротивления, имеют проводниковое или полупроводниковое сопротивление (термосопротивление, термистор), включенное обычно в качестве плеча дифференциальной или мостовой схемы.

Иногда используют нелинейность вольтамперных характеристик полупроводниковых термосопротивлений (термисторов), вызывающую скачкообразное изменение тока (релейный эффект) в цепи, в которую включено полупроводниковое сопротивление.

Тепловые реле основанные на изменении диэлектрической постоянной, имеют конденсатор с диэлектриком, резко меняющую свою диэлектрическую постоянную при изменении температуры в заданных пределах. Конденсатор включается в цепь переменного тока последовательно с нагрузкой или в контур генератора электрических колебаний. При достижении заданной температуры происходит резкое изменение тока в цепи нагрузки либо срыв колебаний генератора.

Тепловые реле работающие на изменении магнитной проницаемости, имеют сердечник из ферромагнитного сплава, точка Кюри которого соответствует (или близка) заданному значению температуры срабатывания. Обмотка сердечника включена в цепь переменного тока последовательно с нагрузкой или в контур генератора электрических колебаний. При достижении заданной температуры в цепи нагрузки резко изменяется либо происходит срыв колебаний генератора.

Тепловые реле, использующие изменение величины термоЭДС в зависимости от температуры горячего спая термопары, состоят из термопары и высокочувствительного электрического реле, срабатывающего при достижении температурой (и, следовательно, термоЭДС) заданного значения. Для усиления ЭДС, подводимой к электрическому реле, используют усилителя постоянного или переменного (с предварительной модуляцией и последующей демодуляцией) тока, термопары из полупроводниковых материалов или помещают горячий спай в магнитное поле.

Тепловые реле , использующие акустические принципы не нашли применения в промышленности.

Тепловое реле РТИ 1312 — назначение, подключение

Тепловое реле, или как его еще называют реле перегрузки — это коммутационное устройство, предназначенное для защиты электродвигателей от токовой перегрузки и в случае обрыва фазы. При превышении потребляемого двигателем тока нагрузки тепловое реле разомкнет цепь, отключит магнитный пускатель, тем самым защитив двигатель.

Тепловое реле не предназначено для защиты от короткого замыкания, поэтому в цепь питания перед магнитным пускателем устанавливают автоматический выключатель.

Принцип работы теплового реле

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух пластин, которые сварены из металлов с разными коэффициентами теплового расширения. При воздействии высокой температуры биметаллическая пластина изгибается в сторону металла с меньшим коэффициентом расширения. Достигнув определённой температуры, пластина давит на защёлку расцепителя и под действием пружины происходит размыкание подвижных контактов реле и следовательно размыкание всей электрической цепи.

Если реле находится в режиме автоматического включения, то после остывания биметаллического элемента исполнительный механизм и подвижные контакты реле вернутся в исходное положение. При этом электрическая цепь восстановится и контактор будет готов к работе. Если же реле находится в ручном режиме, то после каждого срабатывания перевод реле в исходное положение должен осуществляться ручным воздействием.

Выбирая тепловое реле, надо исходить из номинального тока нагрузки плюс небольшой запас. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока. Например, если на шильде электродвигателя указан ток 16А, то выбираем тепловое реле с запасом примерно на 18-20А.

Таблица по выбору тепловых реле РТИ

Устройство и подключение теплового реле

На примере РТИ 1312 покажу устройство теплового реле.

РТИ1312 подключается к контактору непосредственно своими штыревыми контактами.

В зависимости от величины и типа пускателей первый и второй контакты теплового реле могут регулироваться вправо-влево. Сбоку на наклейке указано, какой тип контакторов подходит для данного реле.

В зависимости от величины протекающего тока в реле предусмотрена регулировка уставки срабатывания по току с помощью поворотного регулятора, расположенного на передней панели реле. Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.

Также на панели управления расположена кнопка «TEST»,имитирующая срабатывание защиты реле и проверки его работоспособности. Выступающая красная кнопка «STOP»предназначена для принудительного размыкания нормально-замкнутого контакта NC. При этом питание на катушке контактора пропадает и нагрузка отключается.

Электротепловое реле может работать в ручном или автоматическом режиме. Режим работы реле задается поворотным переключателем «RESET». При автоматическом режиме переключатель утоплен и при срабатывании теплового реле оно автоматически включится после остывания биметаллической пластины. Для перевода реле в ручной режим необходимо повернуть переключатель против часовой стрелки.

После того, как тепловое реле настроено, его можно закрыть прозрачной защитной крышкой и при необходимости опломбировать. Для этого на передней панели и крышке имеются специальные проушины.

Электрическая схема реле РТИ

Входное напряжение подходит на контакты 1,3,5, а выходное напряжение на нагрузку поступает с контактов 2, 4, 6. Кнопки «TEST» и «RESET» меняют положение подвижных контактов реле, а кнопкой «STOP» меняется положение только нормально-замкнутого контакта (95 — 96).

Нормально-замкнутые контакты применяются в схемах управления электродвигателями через магнитный пускатель, а нормально-разомкнутые контакты — в основном в цепях сигнализации, например для вывода световой индикации на панель оператора.

Схема подключения нереверсивного магнитного пускателя с тепловым реле

Типичная схема подключения нереверсивного пускателя с тепловым реле выглядит так:

Подробнее о работе данной схемы вы можете прочитать в статье Магнитный пускатель, здесь же я хочу остановиться только на подключении теплового реле. Как видно из схемы на силовые контакты теплового реле подключаются только две фазы, а третья идет напрямую на двигатель. В современных тепловых реле задействованы все три фазы. Также используется дополнительный нормально-замкнутый контакт реле. При перегрузки двигателя он разомкнется и разорвет цепь питания катушки контактора.

При срабатывании теплового реле не стоит сразу же пытаться включать его снова, необходимо выждать время пока биметаллические пластины не остынут. Кроме того стоит определить причину срабатывания — проверить всю схему подключения, подтянуть контакты, проверить температуру двигателя, потребление тока по каждой фазе двигателя.

Тепловое реле: схема подключения, принцип работы, назначение

Тепловые реле — это электрические устройства, основным назначением которых является защита двигателя от избыточной нагрузки и, как следствие, перегрузки системы в целом. На сегодняшний день наиболее распространенными являются следующие типы тепловых реле: ТРН, РТИ, РТТ и РТЛ. Необходимость применения тепловых реле обусловлена тем, что долговечность любого оборудования напрямую зависит от того, как часто оно бывает перегружено. Так, при регулярном превышении номинального напряжения происходит нагрев оборудования, что приводит к старению изоляции и, как следствие снижает эксплуатационный срок установок.

Схема подключения теплового реле

Схемы подключения электродвигателей, в которые включено тепловое реле, могут существенно отличаться между собой, в зависимости от технической необходимости и наличия различных устройств. Тем не менее, в каждой из схем тепловое реле обязательно должно подключаться последовательно с катушкой пускателя. Это обеспечивает надежную защиту от перегрузок оборудования. Так, при превышении определенного уровня потребляемого двигателем тока тепловое реле размыкает цепь, тем самым отключая магнитный пускатель и сам двигатель от источника электропитания.

Принцип работы теплового реле

На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.

Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.

Виды тепловых реле (РТТ, РТЛ, ТРН, РТИ)

Тепловые реле РТТ применяются в тех случаях, когда требуется обеспечить эффективную защиту трехфазных асинхронных двигателей от перегрузок, длительность которых превышает допустимую (которые могут возникнуть, например, при выпадении одной из фаз). Как правило, они являются комплектующими частями в управляющих схемах электроприводов и в магнитных пускателях.

Тепловые реле РТЛ используются в тех случаях, когда требуется защитить от перегрузок по продолжительности, а также о несимметричности тока, например, при выпадении одной из фаз. Этот тип реле может устанавливаться как на пускателях, так и отдельно, при наличии клеммников.

Двухфазное тепловое реле ТРН используется, как правило, на магнитных пускателях в асинхронных двигателях. Его особенностью является возможность использования в сетях постоянного тока.

Тепловое реле РТИ выполняет те же функции, что и описанные выше, а также обеспечивает защиту от затянутого пуска. Данный тип реле обладает собственным потреблением энергии, поэтому дополнительно при его использовании рекомендуется устанавливать предохранители.

Магнитный пускатель, тепловое реле — назначение, устройство, принцип работы, выбор.

Магнитные пускатели переменного тока предназначены в основном для дистанционного управления асинхронными электродвигателями. Осуществляют также нулевую защиту, т. е. при исчезновении напряжения или его снижении на 40-60 % от номинального магнитная система отпадает и силовые контакты размыкаются. В комплекте с тепловым реле пускатели выполняют также защиту электродвигателей от перегрузок и от токов, возникающих при обрыве одной из фаз.

Наиболее распространенные серии пускателей с контактной системой и электромагнитным приводом: ПМЕ, ПМА, ПА*, ПВН, ПМЛ, ПВ, ПАЕ*, ПМ12.

Пускатели выпускаются в открытом, защищенном и пылебрызгонепроницаемом исполнениях, с тепловыми реле и без них, бывают реверсивными и нереверсивными.

Устройство. Внутри корпуса пускателя (рис. 1) размещена электромагнитная система, включающая в себя неподвижную Ш-образную часть сердечника 7 и обмотку 6, намотанную на катушку. Сердечник набран из изолированных друг от друга (для уменьшения потерь от вихревых токов) листов электротехнической стали. Подвижная часть сердечника 5 (якорь) соединена с пластмассовой траверсой 4, на которой смонтированы контактные мостики 2 с подвижными контактами. Плавность замыкания контактов и необходимое усилие нажатия обеспечиваются контактными пружинами 1. Неподвижные контакты припаяны к контактным пластинам 3, снабженным винтовыми зажимами для присоединения проводов внешней цепи. Кроме главных контактов, пускатели имеют дополнительные (блокировочные) контакты 8, расположенные на боковых поверхностях аппарата. Главные контакты закрыты крышкой, защищающей их от загрязнения, случайных прикосновений и междуфазных замыканий.

Принцип действия пускателя заключается в следующем: при включении пускателя по катушке проходит электрический ток, сердечник намагничивается и притягивает якорь, при этом главные контакты замыкаются, по главной цепи протекает ток. При отключении пускателя катушка обесточивается, под действием возвратной пружины якорь возвращается в исходное положение, главные контакты размыкаются.

При отключении магнитного пускателя вследствие перебоев в электроснабжении размыкаются все его контакты, в том числе и вспомогательные. При появлении напряжения в сети пускатель не включается до тех пор, пока не будет нажата кнопка «Пуск». То же происходит, если напряжение в сети снижается до 50-60% номинального.

При выборе магнитных пускателей прежде всего необходимо обращать внимание на наибольшую допустимую мощность электродвигателя, работой которого будет управлять пускатель. Если магнитный пускатель управляет работой двигателя большей мощности, чем указано в паспорте пускателя, то контактная система пускателя быстро выйдет из строя. Кроме того, необходимо обращать внимание на напряжение, указанное на втягивающей катушке. Если подать напряжение большее, чем номинальное напряжение катушки, то последняя сгорит при первом же включении магнитного пускателя.

Тепловые реле — это электрические устройства, основным назначением которых является защита двигателя от избыточной нагрузки и, как следствие, перегрузки системы в целом. На сегодняшний день наиболее распространенными являются следующие типы тепловых реле: ТРН, РТИ, РТТ и РТЛ. Необходимость применения тепловых реле обусловлена тем, что долговечность любого оборудования напрямую зависит от того, как часто оно бывает перегружено. Так, при регулярном превышении номинального напряжения происходит нагрев оборудования, что приводит к старению изоляции и, как следствие снижает эксплуатационный срок установок.

Схема подключения теплового релеСхемы подключения электродвигателей, в которые включено тепловое реле, могут существенно отличаться между собой, в зависимости от технической необходимости и наличия различных устройств. Тем не менее, в каждой из схем тепловое реле обязательно должно подключаться последовательно с катушкой пускателя. Это обеспечивает надежную защиту от перегрузок оборудования. Так, при превышении определенного уровня потребляемого двигателем тока тепловое реле размыкает цепь, тем самым отключая магнитный пускатель и сам двигатель от источника электропитания.

Принцип работы теплового реле

На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим.

15. Условия выбора электрических аппаратов.

Тепловое реле: назначение устройств, технические характеристики

Использование тепловых реле позволяет защитить электрические двигатели от токовой перегрузки: при превышении определенных параметров они отключают подачу электроэнергии.

При перегрузке в цепи происходит значительное повышение температуры. В некоторых случаях это может стать причиной неисправности или поломки оборудования. Применение тепловых реле дает возможность значительно продлить период эксплуатации аппаратуры, так как обеспечиваются нормальные условия для его функционирования.

Стоимость устройств варьируется в широком диапазоне. Во многом она зависит от особенностей эксплуатации, назначения и вида теплового реле. Например, РТЛ. Обеспечивают защиту электрических моторов от возможных перегрузок, исключают вероятность заклинивания ротора, перекоса фаз и затяжного пуска.

Цены на тепловые реле также зависят от того, какими технико-эксплуатационными характеристиками они обладают.

Основные параметры тепловых реле:

  1. Номинальный ток. При определенном значении ТР не срабатывает в течение длительного промежутка времени. В то же время превышение лимита не приводит к незамедлительному отключению цепи. Например, если значение больше номинального на 20 %, то ТР сработает примерно через 20-30 минут.
  2. Номинальное напряжение. Обычно бытовые модели предназначены для эксплуатации в однофазных сетях переменного тока (220 вольт и 50 Гц). При этом выпускаются и промышленные тепловые реле, которые могут быть рассчитаны на использование в трехфазных сетях.
  3. Эксплуатационные условия. Категория размещения тепловых реле определяется в соответствии с нормами ГОСТ 15150. Стандарт описывает возможные температурные значения и уровень влажности, а также устойчивость прибора к вибрациям, ударам, взрывоопасным газам.
  4. Граница срабатывания теплового реле.
  5. Количество и вид дополнительных контактов управления.
  6. Чувствительность к перекосу фаз.

ВИДЫ ТЕПЛОВЫХ РЕЛЕ, ИХ ПРИНЦИП ДЕЙСТВИЯ И СФЕРА ПРИМЕНЕНИЯ

Область применения такого оборудования — цеха промышленных предприятий, ремонтные мастерские, некоторые объекты сельского и коммунального хозяйства. Внедрение этих устройств позволяет защищать электроприводы от перегрузок.

Принцип действия реле основан на способности электрического тока повышать температуру проводника при прохождении через него.

Любой материал при нагреве увеличивает свой объем, но по-разному. Если нагреть две жестко соединенные пластины из разных металлов, то они деформируются. Движение передается на механическую защелку выключателя, который срабатывает и разъединяет электрические контакты.

Как правило, в тепловом реле используют 2 биметаллические пластины. Чаще всего это инвар, а также немагнитная или хромоникелевая сталь, имеющие разные коэффициенты расширения. Там, где пластины прилегают друг к другу, они жестко закрепляются путем штамповки, горячей прокатки или сварки. Когда происходит нагревание неподвижной части закрепленной пластины, она изгибается, что и приводит к срабатыванию — взаимодействию с контактным блоком реле.

Однако нагревание может происходить двумя способами. Например, тепло выделяется при прохождении через биметаллическую часть нагрузочного тока. Кроме того, нагрев возможен благодаря специальному нагревателю, также обтекаемому током нагрузки. Наиболее эффективно тепловое реле работает при комбинировании двух способов нагревания.

Разновидности применяемых в промышленности тепловых реле:

Серия РТЛ — устройства для защиты электродвигателей от длительных перегрузок или выпадения одной из фаз. Они применяются как в комплекте с пускателями типа ПМЛ, так и отдельно.

РТТ — тепловые реле для защиты промышленных асинхронных электромоторов (380 V) с короткозамкнутым ротором от затяжных перегрузок. Они также реагируют на выпадение фазы, иногда встраиваются в пускатели типа ПМА.

Серия ТРН — это двухфазные тепловые реле промышленного назначения. Они применяются в комплекте с магнитными пускателями и выполняют функцию защиты асинхронных электродвигателей от перегрузки.

РТП — тепловые реле с комбинированной системой нагрева биметаллической пластины. Конструкция устройства обеспечивает плавную ручную настройку тока срабатывания. Возврат якоря реле в исходное положение осуществляется двумя способами:

  • вручную, посредством кнопки;
  • автоматически, после остывания биметаллической пластины.

Особенности установки теплового реле

Обычно монтаж производится вместе с магнитным пускателем, который обеспечивает подключение и запуск электродвигателя. Некоторые тепловые реле устанавливаются как самостоятельные приборы на DIN-рейку либо на монтажные панели (ТРН или РТТ). Причем если у реле ТРН есть лишь пара входящих подключений, то фаз все равно 3.

Отключенный фазный провод выводится с пускателя к двигателю в обход устройства. Изменение тока будет происходить пропорционально во всех фазах, в результате чего достаточно контролировать только две из них.

Возможно подключение теплового реле и с помощью токовых трансформаторов, что целесообразно при использовании мощных моторов. Как бы там ни было, важно избегать ошибок при установке, например, нельзя подключать реле с параметрами, не соответствующими характеристикам электродвигателя.

Технические характеристики тепловых реле:
Номинальное напряжение переменного тока, В 660
Частота переменного тока, Гц 50 (60)
Время срабатывания при токе 1,2 Iном, мин 20
Время ручного возврата, мин, не менее 1,5
Время срабатывания при нагрузке 6-кратным Iном, с РТЛ-1000 4,5 . 9,0
РТЛ-2000 4,5 . 12,0
Термическая стойкость реле, с, при нагрузке 18-кратным Iном на ток: до 10А 0,5
свыше 10А 1,0
Тип реле Диапазон регулирова-ния номинального тока несрабатывания, А Мощность, потребляемая одним полюсом реле, Вт Тип реле Диапазон регулирова-ния номинального тока несрабатывания, А Мощность, потребляемая одним полюсом реле, Вт
Номинальный ток 25А
РТЛ-1001 0,10 . 0,17 2,05 РТЛ-1008 2,40 . 4,00 1,87
РТЛ-1002 0,16 . 0,26 2,03 РТЛ-1010 3,80 . 6,00 1,84
РТЛ-1003 0,24 . 0,40 1,97 РТЛ-1012 5,50 . 8,00 1,68
РТЛ-1004 0,38 . 0,65 1,99 РТЛ-1014 7,00 . 10,0 1,75
РТЛ-1005 0,61 . 1,00 1,8 РТЛ-1016 9,50 . 14,0 2,5
РТЛ-1006 0,95 . 1,6 1,8 РТЛ-1021 13,0 . 19,0 2,75
РТЛ-1007 1,50 . 2,60 1,8 РТЛ-1022 18,0 . 25,0 2,8
Номинальный ток 80А
РТЛ-2053 23 . 32 2,43 РТЛ-2059 47 . 64 3,69
РТЛ-2055 30 . 41 3,03 РТЛ-2061 54 . 74 4,38
РТЛ-2057 38 . 52 3,3 РТЛ-2063 63 . 86 5,62

КАК ПРАВИЛЬНО ВЫБРАТЬ НУЖНОЕ ТЕПЛОВОЕ РЕЛЕ

Для правильного выбора модели теплового реле нужно ориентироваться на мощностные параметры защищаемого электродвигателя. Основные характеристики устройства отображаются в условном обозначении. В маркировке теплового реле в обязательном порядке присутствуют следующие данные:

  • диапазон токов установки;
  • климатическое исполнение;
  • режим возврата теплового реле (ручной или автоматический).

При выборе теплового реле рекомендуем учитывать и такие аспекты:

  • некоторые разновидности имеют функцию недогрузки, позволяющую выявить уменьшение тока в цепи;
  • устройства могут иметь опцию компенсации температуры внешней среды — такие считаются самыми удобными и надежными;
  • выпускаются приборы, дополненные световыми индикаторами. Датчики или светодиоды отображают сигналы состояния и включения.

Тепловое реле LR2 D1314. Назначение, устройство, схема подключения. Обозначение на схеме теплового реле

принцип работы, виды, схема подключения + регулировка и маркировка

Долговечность и надежность в эксплуатации любой установки с электрическим двигателем зависит от различных факторов, но в значительной мере на срок службы мотора влияют токовые перегрузки.

Предсказать возникновение аварийных ситуаций, когда ток превышает максимально допустимые показатели, просто невозможно, а потому для защиты электромашин подключают тепловое реле.

Зачем нужны защитные аппараты?

Даже если электропривод грамотно спроектирован и используется без нарушения базовых правил эксплуатации, всегда остается вероятность возникновения неисправностей.

К аварийным режимам работы относят однофазные и многофазные КЗ, тепловые перегрузки электрооборудования, заклинивание ротора и разрушение подшипникового узла, обрыв фазы.

Функционируя в режиме повышенных нагрузок, электрический двигатель расходует огромное количество электроэнергии. А при регулярном превышении показателей номинального напряжения оборудование интенсивно нагревается.

В результате быстро изнашивается изоляция, что приводит к значительному снижению эксплуатационного срока электромеханических установок.

Чтобы исключить подобные ситуации, в цепи электрического тока подключают реле тепловой защиты. Их основная функция – обеспечить нормальный режим работы потребителей.

Они отключают мотор с определенной выдержкой времени, а в некоторых случаях – мгновенно, чтобы предотвратить разрушение изоляции или повреждение отдельных частей электроустановки.

Токовое реле постоянно защищает электрический двигатель от обрыва фазы и технологических перегрузок, а также торможения ротора. Это главные причины, из-за которых возникают аварийные режимы

С целью не допустить понижение сопротивления изоляции задействуют устройства защитного отключения, ну а если поставлена задача предотвратить нарушение охлаждения, подключают специальные аппараты встроенной тепловой защиты.

Устройство и принцип работы ТР

Конструктивно стандартное электротепловое реле представляет собой небольшой аппарат, который состоит из чувствительной биметаллической пластины, нагревательной спирали, рычажно-пружинной системы и электрических контактов.

Биметаллическую пластину изготовляют из двух разнородных металлов, как правило, инвара и хромоникелевой стали, прочно соединенных вместе в процессе сварки. Один металл обладает большим температурным коэффициентом расширения, чем другой, поэтому нагреваются они с разной скоростью.

При токовой перегрузке незафиксированная часть пластины прогибается к материалу с меньшим значением коэффициента теплового расширения. Это оказывает силовое воздействие на систему контактов в защитном устройстве и активирует отключение электроустановки при перегреве.

В большинстве моделей механических тепловых реле есть две группы контактов. Одна пара – нормально разомкнутые, другая – замкнутые постоянно. Когда срабатывает защитное устройство, в контактах меняется состояние. Первые замыкаются, а вторые становятся разомкнутыми.

В электронных ТР задействуют специальные датчики и чувствительные зонды, реагирующие на повышение тока. В микропроцессоре таких защитных устройств запрограммированы параметры, определяющие ситуации, когда необходимо отключать подачу электропитания

Ток детектирует интегрированный трансформатор, после чего электроника обрабатывает полученные данные. Если значение тока в настоящий момент времени больше, чем уставка, импульс мгновенно передается прямо на выключатель.

Размыкая внешний контактор, реле с электронным механизмом блокирует нагрузку. Само устройство устанавливается на контактор.

Биметаллическая пластина может быть нагрета непосредственно – за счет воздействия пикового тока нагрузки на металлическую полосу или косвенно, при помощи отдельного термоэлемента.

Нередко эти принципы объединяют в одном аппарате тепловой защиты. При комбинированном нагреве прибор имеет лучшие рабочие характеристики.

После остывания пластина возвращается в исходное состояние. Коммутирующие контакты автоматически замыкаются либо нужно принудительно приводить их в замкнутое состояние

Базовые характеристики токового реле

Основной характеристикой коммутатора тепловой защиты является выраженная зависимость времени срабатывания от протекающего по нему тока — чем больше величина, тем быстрее он сработает. Это свидетельствует об определенной инерционности релейного элемента.

Направленное перемещение частиц-носителей заряда через любой электроприбор генерирует тепло. При номинальном токе его допустимая длительность стремится к бесконечности.

А при значениях, превышающих номинальные показатели, в оборудовании повышается температура, что приводит к преждевременному износу изоляции.

Обрыв цепи мгновенно блокирует дальнейший рост температурных показателей. Это дает возможность предупредить перегрев двигателя и предотвратить аварийный выход из строя электрической установки

Номинальная нагрузка самого мотора – ключевой фактор, определяющий выбор прибора. Показатель в интервале 1,2-1,3 обозначает успешное срабатывание при токовой перегрузке в 30% на временном отрезке в 1200 секунд.

Продолжительность перегрузки может негативно сказаться на состоянии электрооборудования — при кратковременном воздействии в 5-10 минут нагревается только обмотка мотора, которая имеет небольшую массу.

А при длительных нагревается весь двигатель, что чревато серьезными поломками. Или вовсе может потребоваться замена сгоревшего оборудования новым.

Чтобы максимально уберечь объект от перегрузки, следует конкретно под него использовать реле тепловой защиты, время срабатывания которого будет соответствовать максимально допустимым показателям перегрузки конкретного электродвигателя.

На практике собирать токовое реле под каждый тип мотора нецелесообразно. Один релейный элемент задействуют для защиты двигателей различного конструктивного исполнения.

При этом гарантировать надежную защиту в полном рабочем интервале, ограниченном минимальной и максимальной нагрузкой, невозможно.

Повышение показателей тока не сразу приводит к опасному аварийному состоянию оборудования. Прежде чем ротор и статор нагреются до предельной температуры, пройдет некоторое время

Поэтому нет крайней необходимости в том, чтобы защитное устройство реагировало на каждое, даже незначительное повышение тока. Реле должно отключать электродвигатель только в тех случаях, когда есть опасность быстрого износа изоляционного слоя.

Виды реле тепловой защиты

Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.

ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок.

Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.

РТЛ. Обеспечивают двигателям защиту в таких случаях:

  • при выпадении одной из трех фаз;
  • асимметрии токов и перегрузок;
  • затянутого пуска;
  • заклинивания исполнительного механизма.

Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.

РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.

РТТ могут быть использованы в качестве комплектующих частей в различных схемах управления электроприводами, а также для интеграции в пускатели серии ПМА

ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.

РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/автоматическими выключателями.

Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.

Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.

РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.

Чтобы обеспечить надежную работу электрооборудования, релейный элемент должен обладать такими качествами, как чувствительность и быстродействие, а также селективность

Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания.

Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.

Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.

Подключение, регулировка и маркировка

Коммутационный прибор перегрузки, в отличие от электрического автомата, не разрывает силовую цепь непосредственно, а лишь подает сигнал на временное отключение объекта при аварийном режиме. Нормально включенный контакт у него работает как кнопка «стоп» контактора и подсоединяется по последовательной схеме.

Схема подключения устройств

В конструкции реле не нужно повторять абсолютно все функции силовых контактов при успешном срабатывании, поскольку оно подключается непосредственно к МП.

Такое исполнение позволяет существенно сэкономить материалы для силовых контактов. Намного легче в управляющей цепи подключить малый ток, чем сразу отключать три фазы с большим.

Во многих схемах подключения теплового реле к объекту используют постоянно замкнутый контакт. Его последовательно соединяют с клавишей «стоп» пульта управления и обозначают НЗ – нормально замкнутый, или NC – normal connected.

Разомкнутый контакт при такой схеме может быть использован для инициализации срабатывания тепловой защиты.

Схемы подсоединения электромоторов, в которых подключено реле тепловой защиты, могут значительно отличаться в зависимости от наличия дополнительных устройств или технических особенностей.

В стандартной простой схеме ТР подключают к выходу низковольтного пускателя на электрический двигатель. Дополнительные контакты прибора в обязательном порядке соединяют последовательно с катушкой пускателя

Это обеспечит надежную защиту от перегрузок электрооборудования. В случае недопустимого превышения предельных значений тока релейный элемент разомкнет цепь, моментально отключая МП и двигатель от электропитания.

Подключение и установку теплового реле, как правило, производят вместе с магнитным пускателем, предназначенным для коммутации и запуска электрического привода. Однако есть виды, которые монтируют на DIN-рейку или специальную панель.

Тонкости регулировки релейных элементов

Одним из главных требований к устройствам защиты электродвигателей является четкое действие аппаратов при возникновении аварийных режимов работы мотора.

Очень важно правильно его подобрать и отрегулировать настройки, поскольку ложные срабатывания абсолютно недопустимы.

Электротепловое реле, которое оптимально подходит к конкретному типу двигателя по всем техническим параметрам, способно обеспечить надежную защиту от перегрузок по каждой фазе, предотвратить затяжной старт установки, не допустить аварийных ситуаций с заклиниванием ротора

Среди преимуществ использования токовых элементов защиты также следует отметить довольно высокую скорость и широкий диапазон срабатывания, удобство монтажа.

Чтобы обеспечить своевременное отключение электромотора при перегрузке, реле тепловой защиты необходимо настраивать на специальной платформе/стенде.

В таком случае исключается неточность из-за естественного неравномерного разброса номинальных токов в НЭ.

Для проверки защитного устройства на стенде применяется метод фиктивных нагрузок. Через термоэлемент пропускают электрический ток пониженного напряжения, чтобы смоделировать реальную тепловую нагрузку. После этого по таймеру безошибочно определяют точное время срабатывания.

Настраивая базовые параметры, следует стремиться к таким показателям:

  • при 1,5-кратном токе устройство должно отключать двигатель через 150 с;
  • при 5…6-кратном токе оно должно отключать мотор через 10 с.

Если время срабатывания не соответствует норме, релейный элемент необходимо отрегулировать посредством контрольного винта.

Для корректной работы обязательно нужно настроить прибор на наибольший допустимый электрический ток двигателя и температуру воздуха

Это делают в тех случаях, когда значения номинального тока НЭ и мотора отличаются, а также если температура окружающей среды ниже номинальной (+40 ºC) более, чем на 10 градусов по шкале Цельсия.

Ток срабатывания электротеплового коммутатора уменьшается с повышением температуры вокруг рассматриваемого объекта, так как нагрев биметаллической полосы зависит от этого параметра. При существенных отличиях необходимо дополнительно отрегулировать ТР или подобрать более подходящий термоэлемент.

Резкие колебания температурных показателей сильно влияют на работоспособность токового реле. Поэтому очень важно выбирать НЭ, способный эффективно выполнять основные функции с учетом реальных значений.

ТР рекомендовано размещать в одном помещении с защищаемой электроустановкой. Их нельзя монтировать близко к теплогенераторам, нагревательным печам и другим источникам тепла

К реле с температурной компенсацией эти ограничения не относятся. Токовую уставку защитного аппарата можно регулировать в диапазоне 0,75-1,25х от значений номинального тока термоэлемента. Настройку выполняют поэтапно.

В первую очередь вычисляют поправку E1 без температурной компенсации:

  • Iном – номинальный ток нагрузки двигателя,
  • Iнэ – номинальный ток рабочего нагревательного элемента в реле,
  • c – цена деления шкалы, то есть эксцентрика (c=0,055 для защищенных пускателей, c=0,05 для открытых).

Следующий шаг – определение поправки E2 на температуру окружающего воздуха:

Где ta (ambient temperature) – температура внешней среды в градусах Цельсия.

Последний этап – нахождение суммарной поправки: E=E1+E2.

Суммарная поправка E может быть со знаком «+» или «-». Если в результате получается дробная величина, ее обязательно нужно округлить до целого в меньшую/большую по модулю сторону, в зависимости от характера токовой нагрузки.

Чтобы настроить реле, эксцентрик переводят на полученное значение суммарной поправки. Высокая температура срабатывания уменьшает зависимость работы защитного аппарата от внешних показателей.

Реле тепловой защиты допускает ручную плавную регулировку величины тока срабатывания устройства в пределах ±25% от значения номинального тока электромеханической установки

Регулировка этих показателей осуществляется специальным рычагом, перемещение которого изменяет первоначальный изгиб биметаллической пластины. Настройка тока срабатывания в более широком диапазоне осуществляется заменой термоэлементов.

В современных коммутационных аппаратах защиты от перегрузки есть тестовая кнопка, которая позволяет проверить исправность устройства без специального стенда.

Также есть клавиша для сброса всех настроек. Обнулить их можно автоматически или вручную. Кроме того, изделие комплектуют индикатором текущего состояния электроприбора.

Маркировка электротепловых реле

Защитные аппараты подбирают в зависимости от величины мощности электрического двигателя. Основная часть ключевых характеристик скрыта в условном обозначении.

Так выглядит маркировка тепловых реле завода КЭАЗ. Важно при выборе обратить внимание на значение номинального тока рассматриваемой модели, чтобы оно было достаточным

Акцентировать внимание следует на отдельных моментах:

  1. Диапазон значений токов уставки (указан в скобках) у разных производителей отличается минимально.
  2. Буквенные обозначения конкретного типа исполнения могут различаться.
  3. Климатическое исполнение нередко подается в виде диапазона. К примеру, УХЛ3О4 нужно читать так: УХЛ3-О4.

Сегодня можно купить самые разные вариации прибора: реле для переменного и постоянного тока, моностабильные и бистабильные, аппараты с замедлением при включении/отключении, реле тепловой защиты с ускоряющими элементами, ТР без удерживающей обмотки, с одной обмоткой или несколькими.

Эти параметры не всегда отображены в маркировке устройств, но обязательно должны быть указаны в техпаспорте электротехнических изделий.

Полезное видео по теме

Устройство и принцип функционирования токового реле для эффективной защиты электродвигателя на примере устройства РТТ 32П:

Правильная защита от перегрузки и обрыва фаз – залог длительной безотказной работы электрического мотора. Видео о том, как реагирует релейный элемент в случае нештатной работы механизма:

Как подсоединить устройство тепловой защиты к МП, принципиальные схемы электротеплового реле:

Реле тепловой защиты от перегрузок – обязательный функциональный элемент любой системы управления электроприводом. Оно реагирует на ток, который проходит на двигатель, и активируется, когда температура электромеханической установки достигает предельных значений. Это дает возможность максимально продлить срок эксплуатации экологически безопасных электродвигателей.

Подключение теплового реле. Основная функция и принцип работы

Для защиты электродвигателя от недопустимых длительных токовых перегрузок, которые могут возникнуть при увеличении нагрузки на вал или потери одной из фаз применяется тепловое защитное реле. Также защитное реле защитит обмотки от дальнейшего разрушения при возникшем междувитковом замыкании.

Тепловым данное реле (сокращенно ТР) называют из-за принципа действия, который схож с работой автоматического выключателя, в котором изгибающиеся при нагреве электрическим током биметаллические пластины разрывают электрическую цепь, надавливая на спусковой механизм.

Особенности теплового реле

Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.

Тандем контактора и теплового реле

Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.

Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.

Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.

Нормально разомкнутые и нормально замкнутые контакты

Характеристики теплового реле

Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:

  • Номинальный ток защиты;
  • Предел регулировки уставки тока срабатывания;
  • Напряжение силовой цепи;
  • Количество и тип вспомогательных контактов управления;
  • Мощность коммутации контактов управления;
  • Порог срабатывания (коэффициент отношения к номинальному току)
  • Чувствительность к асимметричности фаз;
  • Класс отключения;

Схема подключения

В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).

Схема подключения ТР к контактору в магнитном пускателе

Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.

Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.

В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».

Тепловое реле в схеме реверсивного подключения контакторов

Элементы подключения, управления и настройки ТР

По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).

На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.

Кнопка «Стоп» служит для ручного выключения устройства защиты.

Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.

Управление повторным взводом

Уставка тока срабатывания позволяет сделать выбор значения перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.

Регулировка уставки срабатывания относительно метки

При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.

Графики времятоковой характеристики

Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.

Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.

Также у некоторых тепловых реле имеется флажок срабатывания защиты.

Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,

Защита настроек и маркировка

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.

Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:

    Устанавливаемые рядом с магнитным пускателем, и подключаемые при помощи перемычек (ТРН, РТТ).

Реле РТТ, подключенное при помощи жестких пластинчатых перемычек

Монтируемые непосредственно на контактор магнитного пускателя (современные модели).

Реле устанавливается непосредственно на контакторе

Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.

Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.

Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.

Элемент крепежа на корпусе теплового реле

Специальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».

ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.

Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.

Если убрать рычаги, то будут видны контактные группы теплового реле.

Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.

Похожие статьи

Тепловое реле | Заметки электрика

Здравствуйте, уважаемые посетители и гости сайта «Заметки электрика».

В этой статье я расскажу Вам про назначение, устройство, схему подключения теплового реле на примере LR2 D1314 от фирмы «Schneider Electric». Тепловой компонент рассматриваемого реле имеет номинальный ток 10 (А), а токовый диапазон уставок его составляет от 7 до 10 (А). Об остальных технических характеристиках поговорим чуть позже. А теперь давайте перейдем к определению и назначению теплового реле.

Как Вы уже знаете, тепловое реле, или другими словами реле перегрузки, устанавливается в схемах магнитного пускателя, как нереверсивного типа, так и реверсивного.

Более подробно об этом Вы можете ознакомиться здесь:

Назначение теплового реле

Тепловое реле — это электрический коммутационный аппарат, который предназначен для защиты трехфазных двигателей от токовой перегрузки недопустимой продолжительностью (например, при заклинивании ротора или механической его перегрузки), а также от обрыва любой из фаз питающего напряжения (по функции аналогично реле контроля фаз).

Вот список самых распространённых (известных) серий тепловых реле: ТРП, ТРН, РТТ, РТИ (аналог LR2 D13), РТЛ.

О каждой серии тепловых реле я постараюсь написать отдельную статью, подписывайтесь на рассылку новостей сайта «Заметки электрика».

Прошу заметить, что тепловое реле не защищает электродвигатель от коротких замыканий по причине того, что оно срабатывает с выдержкой времени, т.е. не мгновенно — это отчетливо можно увидеть по графику (кривой) срабатывания теплового реле. Для защиты двигателя от короткого замыкания в силовую цепь перед магнитным пускателем устанавливаются автоматические выключатели или предохранители.

Технические характеристики теплового реле LR2 D1314

Вот его внешний вид:

Я уже говорил выше, что тепловое реле LR2 D1314 имеет конструктивное исполнение один в один, как у теплового реле РТИ.

Ниже я приведу основные технические характеристики, рассматриваемого в данной статье, теплового реле LR2 D1314 от компании «Schneider Electric»:

    номинальный ток теплового компонента — 10 (А)

предел регулирования тока уставки теплового расцепителя — 7-10 (А)

напряжение силовой (главной) цепи — 220 (В), 380 (В) и 660 (В)

два вспомогательных контакта — нормально-замкнутый NC (95-96) и нормально-разомкнутый NO (97-98)

  • коммутируемая мощность вспомогательных контактов — около 600 (ВА)
  • порог срабатывания — 1,14±0,06 от номинального тока
  • чувствительность к асимметрии фаз — срабатывает при 30% от номинального тока по одной фазе, при условии, что по другим фазам протекает номинальный ток
  • класс отключения — 20 (см. график кривой срабатывания теплового реле)
  • Кривая срабатывания теплового реле с классом отключения 20 — показывает среднее время срабатывания реле в зависимости от кратности тока уставки:

    Согласно ГОСТ 30011.4.1-96 (п.4.7.3, таблица 2) время срабатывания теплового реле (класс 20) при кратности тока уставки реле 7,2 составляет 6 — 20 секунд.

    Рассмотрим устройство передней панели теплового реле LR2 D1314

    Рассмотрим устройство передней панели.

    На ней имеется кнопка-переключатель (синего цвета) режима повторного взвода (включения) реле:

    • «А» — автоматический взвод
    • «Н» — ручной взвод

    На данный момент выставлен автоматический режим повторного взвода — синяя кнопка-переключатель утоплена. Это значит, что при срабатывании теплового реле схему питания двигателя можно беспрепятственно и повторно включить.

    Чтобы переключиться на ручной режим, нужно открыть защитное стекло и повернуть синюю кнопку-переключатель влево — он выступит наружу. В ручном режиме после срабатывания теплового реле необходимо в ручную нажать синюю кнопку-переключатель, иначе нормально-замкнутый контакт NC (95-96) останется разомкнутым, тем самым не даст собрать схему питания и управления электродвигателя.

    Также на передней панели теплового реле LR2 D1314 располагается красная кнопка «Тест» («Test»). С помощью нее имитируется работа внутренних механизмов реле и его вспомогательных контактов.

    Кнопку «Test» я нажимаю с помощью небольшой отвертки.

    У данного типа теплового реле имеется индикация срабатывания в виде желтого (оранжевого) флажка в окошке. Также по этому флажку можно ориентироваться о текущем состоянии вспомогательных контактов реле. Когда в окошке находится желтый флажок, то значит нормально-замкнутый контакт NC (95-96) находится в разомкнутом состоянии, а нормальный-разомкнутый контакт NO (97-98) — в замкнутом.

    Ну вот мы плавно подобрались к красной кнопке «Стоп». Красная кнопка «Стоп» выполнена в виде выступающего «грибка» и нужна для принудительного размыкания нормально-замкнутого контакта NC (95-96). При этом катушка магнитного пускателя теряет питание и двигатель отключается от сети.

    Еще на передней панели теплового реле LR2 D1314 имеется регулятор уставки, с помощью которого регулируется и настраивается уставка срабатывания теплового реле. В нашем случае ток уставки реле находится в пределах от 7 до 10 (А). Регулировка производится путем поворота регулятора до совмещения нужной уставки реле и риски-треугольника.

    После всех настроек и регулировок защитная крышка теплового реле закрывается и пломбируется. Для этого на ней имеется специальное «ушко». Таким образом, доступ к регулировке уставок реле будет закрыт и никто из посторонних в процессе эксплуатации не сможет их изменить.

    Схема подключения теплового реле LR2 D1314

    Представляю Вашему вниманию схему теплового реле LR2 D1314:

    Входные силовые цепи (медные выводы) не маркируются и подключаются непосредственно к пускателю или контактору. Маркировка выходных главных (силовых) цепей теплового реле имеют маркировку: T1 (2), Т2 (4), Т3 (6) и к ним подключается электродвигатель.

    У данного типа реле существует две пары вспомогательных контактов:

    • нормально-замкнутый NC (95-96)
    • нормально-разомкнутый NO (97-98)

    Нормально-замкнутый контакт используется в схеме управления магнитным пускателем и подключается, например, перед кнопкой «Стоп». Нормально-разомкнутый контакт чаще всего используется в цепях сигнализации для вывода световой индикации на панель оператору или диспетчеру при срабатывании теплового реле.

    Для примера я подключил тепловое реле на выводы T1 (2), Т2 (4), Т3 (6) магнитного пускателя ПМЛ-1100. Вот так это выглядит:

    Крепится тепловое реле к пускателю с помощью силовых выводов и специального крючка, который плотно фиксирует корпус реле в неподвижном состоянии.

    В зависимости от величины и типа пускателей или контакторов выводы («ножки») теплового реле регулируются путем изменения своего межосевого расстояния.

    На корпусе есть «подсказка» с рекомендациями по выставлению «ножек» теплового реле в зависимости от типа пускателя или контактора.

    Конструкция и внутреннее устройство теплового реле LR2 D1314

    Ну чтож, заглянем внутрь реле.

    Для этого открутим 3 крепежных винта.

    Затем тонкой отверточкой очень аккуратно вскроем защелки по периметру корпуса. Почему аккуратненько — да потому что корпус выполнен из пластика, который очень хрупкий и можно с необычайной легкостью сломать крепежные защелки.

    Снимаем верхнюю крышку реле.

    На фотографии видны три биметаллические пластины, которые установлены в каждом полюсе (фазе).

    Откручиваем винты выходных клемм и вытаскиваем из корпуса биметаллические пластины.

    Затем снимаем спусковой механизм теплового реле.

    Принцип работы системы рычагов спускового механизма.

    Вот так выглядит тепловое реле LR2 D1314 без биметаллических пластин и спускового механизма.

    Чтобы добраться до контактной системы теплового реле, нужно снять регулятор уставок и выкрутить винт.

    На фотографии ниже изображены контакты теплового реле в режиме готовности.

    А сейчас показаны контакты при срабатывании теплового реле:

    Я уже упоминал в начале статьи, что при нажатии на кнопку «Стоп» принудительно размыкается нормально-замкнутый контакт NC (95-96), при этом нормально-разомкнутый контакт не изменяет своего положения. Вот подтверждение моих слов.

    А вот фотография всех деталей теплового реле LR2 D1314.

    Принцип работы теплового реле LR2 D1314

    Несколько слов о конструкции биметаллической пластины.

    Биметаллическая пластина состоит из 2 пластин разных материалов, у которых коэффициент линейного теплового расширения значительно отличается друг от друга. Например:

    • сплав железа с никелем (инвар) со сталью
    • ниобий со сталью

    Соединяются эти две пластины с помощью сварки или клепки.

    Один конец биметаллической пластины закреплен (неподвижный), а другой — подвижный и соприкасается со спусковым механизмом теплового реле. Когда биметаллическая пластина нагревается от проходящего через нее тока, она начинает изгибаться в сторону материала, у которого коэффициент линейного теплового расширения меньше.

    А теперь рассмотрим принцип работы теплового реле LR2 D1314.

    В нормальном режиме работы электродвигателя через биметаллические пластины трех полюсов (трех фаз) протекает ток нагрузки электродвигателя — пластины нагреваются до определенной начальной температуры, которая не вызывает их изгиб. Предположим, что по некоторой причине ток нагрузки двигателя увеличился, соответственно, по биметаллическим пластинам будет протекать ток больше номинального, который и вызовет их подогрев (температура станет больше начальной). При этом подвижная часть биметаллических пластин начнет изгибаться и приведет в действие спусковой механизм теплового реле.

    После срабатывания теплового реле нужно подождать определенное время, пока не остынут биметаллические пластины и не разогнутся в нормальное положение. Да и включать сразу же электродвигатель в сеть после срабатывания теплового реле совершенно нецелесообразно, ведь в первую очередь нужно определить причину и устранить ее.

    P.S. Пожалуй на этом я закончу статью о тепловом реле LR2 D1314 от фирмы «Schneider Electric». В следующих статьях я расскажу Вам как правильно выбрать тепловое реле, а также покажу как его настроить и проверить на стенде. Если у Вас имеются вопросы по материалу статьи, то готов выслушать Вас — форма комментариев всегда открыта.

    Если статья была Вам полезна, то поделитесь ей со своими друзьями:

    Тепловое реле: устройство, принцип действия, назначение

    Конструкция

    Начнем с того, что расскажем, из чего состоит реле тепловой защиты. В основу работы РТ заложено явление описано физическим законом Джоуля-Ленца:

    Количество тепла выделяемому на участке электрической цепи пропорционально квадрату силы тока и сопротивления данного участка.

    Данное явление с успехом используется в тепловом расцепителе. Короткий участок цепи, выполняющий роль теплового излучателя, намотан спиралью на изолятор. Весь ток, проходящий через электрическую машину, проходит через данный участок. Непосредственно возле спирали стоит биметаллическая пластина, которая при нагревании изгибается и воздействует на контактную группу. Пластина состоит из двух разнородных металлов, имеющих разный коэффициент расширения при нагреве, объединенных в один элемент.

    На фото ниже изображен разрез действующего аппарата. Через проводники проходит три фазы питания на электрический двигатель. Обмотка нагрева расположена сверху биметаллической пластины для уменьшения ложного срабатывания от внешнего воздействия. Пластины упираются в подвижную планку, которая толкает механизм расцепителя. Сверху расположен пружинный регулятор токовой установки, для точной настройки пределов срабатывания, и две группы контактов (открытые NO и закрытые NC).

    Принцип работы

    Как выглядит тепловое реле вы узнали, теперь идем дальше и расскажем, как работает данное устройство. Как мы уже сказали ранее, РТ защищает двигатель от продолжительной перегрузки.

    На каждом электродвигателе есть табличка с паспортными данными, где указан номинальный рабочий ток. Существуют механизмы, в работе которых возможно превышение рабочего тока, как во время запуска, так и в рабочем процессе. При длительном воздействии таких перегрузок, происходит перегрев обмоток, разрушение изоляции, и выход из строя самого двигателя.

    Данное реле тепловой защиты предназначено для воздействия на цепи управления, путем отключения схемы, размыканием контактов, или подачей сигнала предупреждения дежурному персоналу замыкая контакты. Устройство устанавливается после пускового контактора в силовую цепь перед электродвигателем для того, чтобы контролировать проходящий ток.

    Установку параметров производят в большую сторону от номинального тока двигателя, на величину 10-20 %, согласно паспортным данным. Отключение машины происходит не сразу, а по прошествии определенного времени. Все зависит от температуры окружающей среды и тока перегрузки, и может колебаться от 5 до 20 минут. Неправильно выбранный параметр приведет к ложному срабатыванию или игнорированию перегруза и выходу из строя оборудования.

    Графическое обозначение устройства на схеме по ГОСТ:

    Более подробно узнать о том, как устроено тепловое реле и как оно работает, вы можете, просмотрев данное видео:

    Устройство и принцип действия РТТ

    Назначение

    Сразу же хотелось бы сказать о том, что существуют различные виды и типы тепловых реле и соответственно область применения каждой классификации своя собственная. Вкратце поговорим о назначении основных разновидностей устройств.

    РТЛ — трехфазное, предназначено для защиты электродвигателя от перегрузок, перекоса фаз, затянутого пуска или заклинивания ротора. Крепятся на контакты пускатели ПМЛ или как самостоятельное устройство с клеммами КРЛ.

    РТТ — на три фазы, предназначены для защиты короткозамкнутых двигателей от токов перегрузки, перекоса фаз, заклинивания ротора двигателя, затянутого запуска механизма. Может крепиться на ПМА и ПМЕ пускатели, а также самостоятельно устанавливаться на панели.

    РТИ — защищают электромотор от перегрузки, асимметрии фаз, длинного пуска и заклинивания машины. Трехфазное тепловое реле, крепится на пускатели серии КМТ и КМИ.

    ТРН — двухфазное реле, контролирует режим работы и пуска, имеет только ручной возврат контактов, работа устройства мало зависит от температуры окружающей среды.

    Твердотельные трехфазное реле, не имеют подвижных деталей, не зависят от состояния окружающей среды, применяют во взрывоопасных местах. Следит за током нагрузки, разгоном, обрывом фаз, заклиниванием механизма.

    РТК — контроль температуры происходит щупом, расположенным в корпусе электроустановки. Представляет собой термо реле, и контролирует только один параметр.

    РТЭ — реле плавления сплава, электропроводящий проводник выполнен из сплава металла, при определенной температуре плавится и механически разрывает цепь. Данное тепловое реле встраивается непосредственно в контролируемое устройство.

    Как видно из нашей статьи, существует большое разнообразие контроля за состоянием электроустановок, отличающихся типом и внешним видом, но одинаково выполняющих защиту электрооборудования. Это и все, что хотелось рассказать вам об устройстве, принципе действия и назначении тепловых реле. Надеемся, информация была для вас полезной и интересной!

    Тепловое реле принцип работы, виды, схема подключения регулировка и маркировка

    Что такое реле краткий экскурс в историю

    Термин пришел из английского языка, от слова «reley», обозначавшим в старину смену почтовых лошадей, а позднее передачу эстафеты в спортивных состязаниях. Существует две версии создания такого устройства. Согласно первой реле изобрел русский ученый П.Л. Шиллинг в начале 30-х годов прошлого столетия. Это была основная составляющая часть в разработанном им телеграфе. Однако большая часть историков склоняется к тому, что прародителем реле стал американец Джорж Генри. Некоммутационное устройство, основывавшееся на электромагнитном принципе действия, получило распространение в 1937 году. Именно тогда поступил в производство первый телеграф.

    Какая из этих версий правильная, сейчас уже сказать нельзя. Возможно, как часто это бывает, ученые разрабатывали устройство параллельно, не зная об изобретениях друг друга. Об этом говорит и то, что историками называется один и тот же промежуток времени появления реле – 1931-1935 годы.

    Это устройство отключает напряжение при перегрузке сети по мощности, сберегая электропроводку

    Общие сведения об устройстве

    Перед тем как устанавливать токовое реле, необходимо подробно изучить его составные части, принцип действия и разновидности. Вся эта информация поможет выбрать максимально эффективный вариант для каждого конкретного устройства.

    Это защитное приспособление считается одним из наиболее эффективных и надёжных. Свою популярность оно получило благодаря простой конструкции и лёгкости установки. Реле качественно выполняет свои функции и помогает предотвратить поломку оборудования в случае возникновения аварийной ситуации.

    Реле тока состоит из следующих элементов:

    • электромагнит, имеющий один или несколько участков с воздушным зазором;
    • катушка;
    • пружина;
    • возвратная пружина;
    • колодка;
    • полюсный наконечник;
    • якорь;
    • корончатая гайка;
    • регулировочный винт;
    • контакты.

    Принцип действия

    Токовое реле, как и любая другая защитная конструкция, используется для аварийного отключения цепи от источника питания. Оно помогает продлить срок службы оборудования и избежать негативного воздействия различных факторов.

    Принцип работы устройства:

    1. Регулируется величина тока срабатывания путём изменения силы натяжения возвратной пружины. Делается это при помощи корончатой гайки и винта, определяющего величину воздушного зазора в электромагните.
    2. Катушка подключается к цепи возбуждения аппарата, на котором установлено реле минимального тока.
    3. Как только ток в цепи достигнет величины срабатывания (минимально допустимого значения), сила притяжения якоря к полюсному наконечнику станет больше противодействующей силы пружины, закреплённой в колодке.
    4. Всё это приведёт к включению приспособления, а также замыканию и размыканию контактов.

    Критерии выбора реле

    На рынке представлено много моделей различных производителей, но выбор определяет техническое задание, основанное на условиях эксплуатации оборудования. В первую очередь, учитывается величина токовой нагрузки, современные изделия предусматривают несколько вариантов крепления, на плоских поверхностях и дин – рейках в распределительных шкафах. Некоторые образцы имеют большое количество опций и преимуществ:

    • малые габариты,
    • легко регулируемый широкий диапазон пороговых значений,
    • световую и звуковую индикацию при срабатывании;
    • Цифровую индикацию значений различных параметров на жидкокристаллическом или светодиодном дисплее.

    При выборе изделия необходимо учитывать условия размещения, климатический фактор и степень защищенности реле. В зависимости от модели и количества опций реле может иметь большое количество технических характеристик, но есть основные, которые обязательно характеризуют все токовые реле. Читайте также статью ⇒

    Различные способы коммутации контакта

    Слаботочными можно называть поляризованные переключатели по объемам коммутируемой мощности. Через контакты реле переменного тока для 24 вольт проходит энергия меньше нескольких десятков миллиампер. Почти во всех видах устройств такого типа предусмотрен «перекидной» контакт. Для изделий на 24 В мощности характерна пружинная система якоря.

    Такие переключатели могут разделяться на два основных вида по методу коммутации:

    • После снятия управляющего напряжения обмотки контакты размыкаются. Доступны три основных положения для якоря такого переключателя;
    • После снятия мощности обмоток состояние коммутации запоминается.

    Для надежной работы источников электроэнергии в авиации используется специально разработанный поляризованный силовой переключатель.

    Виды РМТ

    Токовые реле разделяют по способу подключения:

    • Первичные включаются в разрыв цепи напрямую контактами коммутации и токовой катушкой, такие приборы используются в сетях с напряжением 12,24, 220, 380 до 1000В
    • Вторичные используются в сетях с высоким напряжением, так как токи большие, они подключаются, в разрыв через трансформатор тока. Магнитная катушка подсоединяется последовательно в разрыв вторичной обмотки трансформатора, где величина тока пропорциональна току первичной обмотки, но в десятки раз меньше. При достижении порогового значения коммутационные контакты размыкают цепь, подключаемую к первичной обмотки трансформатора.

    Вторичные реле делятся по способу измерения величины тока и принципу работы механизма переключения:

    • Индукционные с трансформатором тока;
    • Электромагнитные реле с катушкой и сердечником;
    • Дифференциальные работают по принципу сравнения величины тока на участках до нагрузки и после нее. При нормальной работе эти токи равны, коротком замыкании или утечке по различным причинам они отличаются, тогда нагрузка отключается от источника питания;
    • Электронные работают на полупроводниках, при превышении установленного порога величины тока p-n-p переходы закрываются и нагрузка обесточивается.

    Каждый вид имеет свои особенности подключения в цепи с различными нагрузками, это зависит от конструкции реле, функционального назначения схемы, величины тока и вида приборов нагрузки.

    Назначение и принцип работы фотореле

    Фотореле – это другими словами говоря, реле управления освещением. В бытовых электросетях оно применяется, как правило, для автоматического включения освещения при начале сумраков.

    Оно применяется, например, для включения освещения участка перед частным домом или же вообще всего приусадебного участка; включать освещение декоративных элементов, как фонтаны, аквариумы и так далее.

    Это реле может управлять не только группами света, но и других приборов, которые эксплуатируются в зависимости от освещенности времени суток, когда человек самостоятельно не может их включить, так как находится на работе, например. Не будем рассматривать все возможные варианты подключаемых приборов, рассмотрим лишь, какой у фотореле принцип работы, ну и схему реле соответственно.

    Принцип работы фотореле (реле освещения) элементарной разновидности сводится к тому, чтобы замыкать/размыкать контролируемый участок цепи, основываясь на показателях освещенности. Таким образом, исполнительный механизм в фотореле содействует со встроенным или отдельно подключающимся к нему датчиком света через блок управления или напрямую.

    Этот датчик света представляет из себя так называемый «фотоблок» с чувствительным к свету фотопроводником, который при попадании на него света увеличивает/уменьшает сопротивление, тем самым, пропуская через себя больше или меньше тока. Ток от фотоблока служит показателем блоку управления, на основе которого и происходит управление исполнительным элементом.

    При этом сам блок управления может регулироваться на определенный уровень освещенности и задержки времени. Что касается самого устройства замыкания/размыкания цепи, то оно может быть представлено как электромагнитное реле или же так называемый «терристорный ключ» — электронный аналог, не вмещающий в себе механических элементов.

    Элементарная схема подключения сумеречного выключателя (схема подключения фотореле) вмещает в себе тиристорный ключ или электромагнитное реле, которое пропускает напряжение при подаче сигнала от фоторезистора.

    При этом есть две схемы, как видно, отличающиеся лишь тем, что в левой подключение фазы для подачи напряжения во внутреннюю сеть осуществляется отдельно, а во второй же используется фаза, которая питает сам прибор сумеречного освещении.

    Фотореле, которое используется на правой схеме, более подходит для маломощного освещения.

    Назначение и принцип работы реле контроля температуры

    Реле контроля температуры является еще одной составляющей автоматических приборов управления. Оно находит свое применение, когда в быту имеются приборы, которые работают или выключаются в связи с показателями температуры окружающей среды.

    Так, например, человек установил реле температуры, задал ему температуру срабатывания и ушел по делам. А в то время пока он занят, реле включает, например, группу, ведущую к обогревателю для зимнего сада на балконе при понижении температуры воздуха помещения до 18 градусов, и выключает его по достижении 25 градусов, чтобы не переусердствовать с обогревом.

    В общем, назначение у этого реле может быть самое разнообразное, но рассмотрим самое главное – его принцип работы.

    Принцип работы реле контроля температуры практически ничем не отличен от фотореле или звукового реле, но управляется оно в отличие от них температурой. Температура воспринимается соответственным чувствительным датчиком температуры, который представляет собой своего рода резистор, сопротивление которого меняется в зависимости от температуры его нагрева/охлаждения.

    Таким образом, соответствующей величины ток поступает в электронный блок управления, где на основе этого определяется температура, сопоставляется с минимальным/максимальным заданным значением. Затем подается напряжение на исполнительный блок, который представляет из себя все тоже электромагнитное реле или же терристорный ключ и замыкает/размыкает электрическую цепь.

    Схема подключения реле контроля температуры хоть и аналогична схеме подключения фотореле, однако может иметь различия в том, что датчик температуры может быть трех контактным.

    Само же реле может управлять отдельной линией фазы, как показано на схеме, так и выдавать на выход ту же самую фазу, которая взята для питания его.

    Техника безопасности

    Токовое реле может не только защищать устройство от поломок, но и причинять вред здоровью

    Это происходит в тех случаях, когда люди пренебрегают правилами техники безопасности и не берут во внимание рекомендации опытных специалистов.

    Необходимые меры безопасности:

    • Любые работы по регулировке или проверке токового реле следует выполнять с соблюдением мер предосторожности.
    • Ремонтные или профилактические мероприятия имеют право проводить только высококвалифицированные сотрудники, имеющие большой опыт подобной работы.
    • Выполнять установку реле могут только люди, ознакомленные с инструкцией прибора и правилами техники безопасности.
    • Запрещается проводить ремонт при включённом в сеть устройстве. В противном случае есть высокая вероятность поражения электрическим током, который может стать причиной серьёзных проблем со здоровьем.
    • Нельзя использовать в работе устройство, имеющее видимые повреждения одного или нескольких элементов.
    • Перед включением оборудования необходимо проверить все контакты токового реле на наличие повреждений и каких-либо дефектов. В случае их обнаружения следует аккуратно устранить проблему при помощи специальных инструментов или их аналогов.
    • Любая износившаяся деталь конструкции должна быть сразу же заменена на новую.
    • Запрещается использовать защитное устройство при сильных вибрациях и чрезмерной запылённости.
    • Нельзя применять приспособление для защиты оборудования, работающего в помещениях с высокой влажностью или большой вероятностью попадания какой-либо жидкости.
    • Некоторые активные химические пары и газы способны разрушить изоляционный слой. Из-за этого не рекомендуется подключать реле в потенциально опасных помещениях.
    • Запрещено использовать защитное реле в помещениях, где хранятся легковоспламеняющиеся и взрывоопасные материалы.
    • Защитное устройство может работать только при температуре от -20 до +40 градусов по Цельсию и влажности не более 80%.
    • Все составные части конструкции должны соответствовать стандартам и быть правильно промаркированными. Если используется какой-либо несоответствующий элемент, то может возникнуть аварийная ситуация, которая повлечёт за собой множество дополнительных проблем.

    Реле минимального тока — это эффективное защитное устройство, которое помогает избежать эксплуатации оборудования при заниженных показателях в сети. При правильном использовании и соблюдении всех рекомендаций специалистов можно значительно увеличить продолжительность работы приспособления и избежать каких-либо проблем.

    Описание модели РМТ 101

    Данное реле современного исполнения, многофункциональное и пользуется большим спросом у потребителей, рассмотрим его технические возможности.

    Функциональное назначение

    Реле используется для контроля тока нагрузки на протяжении всего времени эксплуатации, приборов нагрузки с однофазным питанием. Пределы измерения тока от 0 до 100А, прибор отключает нагрузку при достижении установленного порогового значения тока. Нагрузка подключается через коммутирующие контакты реле при потребляемой мощности не более 1.75кВА. токовые нагрузки выше этого значения до 20кВА подключают через магнитные пускатели с контактами способными выдерживать нагрузку соответствующей мощности.

    Органы управления реле позволяют пользователю вручную задавать:

    • Пороги срабатывания по току;
    • Время задержки отключения;
    • Время повторного включения после срабатывания;

    В то же время кроме функций защиты изделие имеет дополнительные функции:

    • Цифровой амперметр измеряет и отображает токи нагрузки;
    • Ограничение токов потребления;
    • Используется реле с приоритетом выбора нагрузки.

    Встроенный трансформатор тока позволяет измерять величину тока без разрыва цепи, на лицевой панели светодиодные индикаторы отображают состояние реле и в каких пределах находится ток нагрузки.

    Основные технические характеристики

    Питание однофазная сеть переменное напряжение 220В
    Частота напряжения в сети 50 Гц
    Диапазон токовых измерения 0-100А
    Погрешность измерений 1%
    Интервал регулировки времени включения 0 – 900 сек.
    Интервал регулировки времени отключения 0 – 300 сек.
    Максимальный ток коммутации
    Максимально допустимое напряжение 400В
    Потребляемая мощность без нагрузки 3.5Вт.
    Износостойкость контактов коммутации:

    — при нагрузке 8А

    — при нагрузке 1А

    100 тыс. срабатываний;

    Сечение подключаемых проводов в сети 0.5 – 2мм2
    габариты 90-52,6-69,1
    крепление На дин — рейку

    Конструкция позволяет функционировать изделию в любом положении в пространстве относительно поверхности земли.

    Классификация

    В свою очередь устройства разделяются на несколько типов измерения: первичное и вторичное. Первый тип подключается к аппарату непосредственно своими выводами. Такое подключение распространено в сетях до 1000 Вольт.

    Второй тип РМТ (на фото ниже) подключается через трансформатор тока, измеряя вторичный ток, который прямо пропорционален первичному и на порядок меньше, чем в измеряемой цепи. Применяют данный тип подключения в высоковольтных сетях.

    В свою очередь, реле вторичного тока подразделяются на индукционные и электромагнитные, дифференциальные, электронные. Принцип работы дифференциального типа исполнения заключается в сравнении силы тока до потребителя и после него. В нормальных условиях эта величина должна быть одинаковой. Если же параметры отличаются (например, при коротком замыкании), РМТ замыкает контакты, благодаря чему происходит отключение поврежденной линии от сети.

    Примером дифференциального реле является устройство защитного отключения, которое широко применяется как в быту, так и на производстве.

    Подключение и применение токовых реле

    В нормальном рабочем состоянии каждое реле максимального ока должно чутко реагировать на превышение электротоком номинального значения во входной цепи, находящейся под контролем. Когда входной ток увеличивается выше допустимых пределов, происходит переключение выходных контактов, отключающих силовые приборы от электрической сети. Если в дальнейшем ток начинает снижаться и приближаться к номинальному значению, то в этом случае под действием выходного сигнала вновь происходит замыкание цепи и возобновление подачи тока.

    Защитные токовые реле устанавливаются не только на промышленных объектах, но и в жилых зданиях. Практически в каждой квартире имеются бытовые приборы и устройства повышенной мощности. Одновременное включение всех таких потребителей нередко вызывает перегрузки в электрической сети. Чтобы предотвратить возникновение подобных ситуаций, все бытовые приборы разбиваются на категории приоритетных и второстепенных. В число приоритетной бытовой техники входят те приборы, для которых отключение от сети будет критичным. Подобные внезапные отключения могут привести к выходу их из строя. Второстепенные устройства могут быть отключены без какого-либо ущерба для себя. В связи с этим, реле максимального тока устанавливается таким образом, чтобы исключить любые перегрузки в питающей сети.

    На схеме в качестве примера приведено устройство марки РМТ-101. Данная конструкция позволяет задавать определенное время, в течение которого нагрузка отключается, а затем подается вновь.

    Эта модель обладает способностью измерения и контроля токовой нагрузки, при необходимости она может использоваться в качестве цифрового амперметра. Ток в электрической сети может измеряться, не разрывая ее. Для этих целей предусмотрен специальный датчик, встроенный в прибор. Защитное устройство РМТ-101 может подключаться к выносным трансформаторам тока. На его лицевой панели расположены светодиодные и цифровые индикаторы, с помощью которых осуществляется контроль над нагрузкой и текущим значением тока в цепи. Прибор оборудован двумя переключателями, позволяющими выставлять необходимый диапазон измерений, точность определения, а также режим индикации, отображающий текущий или максимальный ток.

    Еще одной функцией РМТ-101 является его применение в качестве реле ограничения потребляемого тока. Кроме того, с его помощью может выбираться оптимально заданная нагрузка. Для работы прибора используются два основных режима – минимального и максимального тока. Переключение между режимами осуществляется специальным переключателем из двух положений.

    Реле максимального тока широко применяются в промышленности. Они обеспечивают защиту мощных электрических двигателей постоянного и переменного тока и другого оборудования от возможных перегрузок. Наиболее типичным устройством, используемым во многих областях, считается прибор РЭО-401, отображенный на рисунке.

    Конструкция этого защитного реле включает в себя два основных узла – электромагнитную систему и размыкающий блок-контакт. Конструкция электромагнитной системы состоит из скобы магнитопровода с ввернутой в нее трубкой. На самой трубке располагается катушка, защищенная изоляционным каркасом. Внутри трубки установлен якорь, свободно перемещающийся вдоль нее. От того, в каком положении якорь находится в трубке, зависит величина тока, при котором срабатывает прибор.

    Величину тока срабатывания можно отрегулировать путем изменения положения скобы. После выполнения всех необходимых регулировок она фиксируется специально предусмотренным винтом. После срабатывания устройства, блок-контакты будут оставаться разомкнутыми до тех пор, пока не произойдет снижение тока до номинального значения. После этого якорь будет передвинут в нижнее положение, а под действием пружины контакты замкнутся. Подключение проводов осуществляется на передней части прибора.

    Принцип работы

    Основой принципа действия устройства является его чувствительность на увеличение токового показателя в защищаемой электролинии. Если увеличивается показатель тока, контакты переключаются, тем самым отключая электрооборудование от цепи. Когда данный параметр понижается и равняется установленному показателю, то элементы снова замыкаются и производство возобновляется.

    Особенности производства реле зависит от их классификации.

    Принцип действия дифференциального типа сформирован посредством сравнения токовой характеристики до нагрузки и после нее. Зачастую такой нагрузкой является трансформатор. В исправном состоянии показатель тока до и после нагрузки имеет равенство между собой. В случае аварийной ситуации, происходит дисбаланс и равенство нарушается. Реле мгновенно замыкает контакты и посылает сигналы, с целью отключения поврежденной области электрической цепи.

    Защитное приспособление, которое имеет электронный тип, изготавливается на основе полупроводников. Преимуществом их является сохранение работоспособности в вибрирующих условиях.

    В конструкцию электромагнитного устройства входит скоба магнитопровода. В скобу вкручена трубка с катушкой наверху. В трубке расположен якорь, который перемещается вдоль нее. При этом показатель срабатывания прибора зависит от расположения якоря.

    Установочный токовый показатель регулируется посредством передвижения расположения скобы. Далее скоба закрепляется винтом. При сработке устройства контакты размыкаются, и якорь переходит в верхнюю позицию. Когда ток возвращается к первоначальному показателю, якорь переходит в нижнюю позицию, при этом контакты запираются.

    Устройство реле тока

    Для начала давайте разберем принцип реле тока и его устройство. На данный момент существуют электромагнитные, индукционные и электронные реле.

    Мы будем разбирать устройство наиболее распространенных электромагнитных реле. Тем более, что они дают возможность наиболее наглядно понять их принцип работы.

    Устройство электромагнитного реле тока

    • Начнем с основных элементов любого реле тока. Оно в обязательном порядке имеет магнитопровод. Причем, этот магнитопровод имеет участок с воздушным зазором. Таких зазоров может быть 1, 2 или более — в зависимости от конструкции магнитопровода. На нашем фото таких зазора два.
    • На неподвижной части магнитопровода имеется катушка. А подвижная часть магнитопровода закреплена пружиной, которая противодействует соединению двух частей магнитопровода.

    Принцип действия электромагнитного токового реле

    • При появлении на катушке напряжения, в магнитопроводе наводится ЭДС. Благодаря этому, подвижная и неподвижная части магнитопровода становятся как два магнита, которые хотят соединиться. Не дает им это сделать пружина.
    • По мере увеличения тока в катушке, ЭДС будет нарастать. Соответственно, будет нарастать притяжение подвижного и неподвижного участка магнитопровода. При достижении определенного значения силы тока, ЭДС будет настолько велико, что преодолеет противодействие пружины.
    • Воздушный зазор между двумя участками магнитопровода начнет сокращаться. Но как говорит инструкция и логика, чем меньше воздушный зазор, тем больше становится сила притяжения, и тем с большей скоростью магнитопроводы соединяются. В результате, процесс коммутации занимает сотые доли секунды.

    Существуют токовые реле разных типов исполнения

    • К подвижной части магнитопровода жестко прикреплены подвижные контакты. Они замыкаются с неподвижными контактами и сигнализируют, что сила тока на катушке реле достигла установленного значения.

    Регулировка тока возврата токового реле

    • Для возврата в исходное положение, сила тока в реле должна уменьшиться как на видео. Насколько оно должно уменьшится, зависит от так называемого коэффициента возврата реле.

    Оно зависит от конструкции, а также может настраиваться индивидуального для каждого реле за счет натяжения или ослабления пружины. Это вполне можно сделать своими руками.

    Часто задаваемые вопросы

    1. Можно из герконовых переключателей сделать реле тока?

    Можно, наматать на геркон несколько витков провода, это будет как обмотка катушки, при протекании тока, контакты геркона будут замыкаться. Но РМТ для размыкания контактов, еще придется столкнуться с трудностью расчета сечения провода и количества витков для установки нужного порога срабатывания. Герконовые контакты рассчитаны для низковольтных сетей с малыми токами. Надежнее поставить реле промышленного изготовления.

    1. Какое токовое реле лучше поставить для защиты насоса в колодце?

    Это зависит от мощности потребляемой насосом и электропитания, для бытового с питанием от одной фазы с потребляемой мощностью до 3 кВт идеально подойдет МРТ- 101.

    Реле тока, виды и применение

    Реле тока – устройства, чаще всего используемые для сигнализации превышения тока в контролируемой цепи, а также для отключения электрических цепей, в случае возникновения перегрузок и коротких замыканий. Применяемые реже реле минимального тока, наоборот, предназначены для размыкания цепей в случае достижения в них определенного минимального его значения.

    Существует много различных типов токовых реле (в дальнейшем ТР), отличающихся принципом действия и конструктивным исполнением

    «Классическое» ТР представляет собой катушку с железным сердечником и подпружиненный подвижный якорь, управляющий контактами.При прохождении тока по катушке создаётся магнитное поле, под действием которого сердечник катушки намагничивается и притягивает якорь, вызывая срабатывание контактов.В отличие от реле напряжения катушка ТР содержит небольшое количество витков провода довольно большого диаметра (зависит от величины тока, на который оно рассчитано) За счёт чего и достигается небольшое падение напряжения на катушке, что важно, так как катушка включается последовательно с контролируемой цепью.Некоторые ТР имеют регулировку тока срабатывания, которая чаще всего осуществляется изменением натяжения пружины якоря. Диапазон регулировки может составлять десятки процентов

    Реле переменного тока (для контроля больших токов) может быть включено через трансформатор тока.Важнейшей характеристикой ТР является время его срабатывания. У реле максимального тока, время срабатывания должно быть как можно меньше и может достигать десятков миллисекунд. Эти устройства используются для защиты от коротких замыканий.Для защиты от длительных перегрузок вместе с этими устройствами используют реле времени, осуществляющие задержку отключения защищаемой цепи. Это исключит возможные ложные срабатывания при кратковременных превышениях тока. Время срабатывания, обычно регулируется.Тепловое ТР представляет собой биметаллическую пластину с нагревательным элементом из материала с высоким удельным сопротивлением (нихром). Она состоит из двух материалов с разными коэффициентами теплового расширения. При нагревании, пластина изгибается, воздействуя на исполнительный механизм.Время срабатывания теплового ТР зависит от величины тока, превышающего номинальное значение уставки ТР. Получается это вследствие того, что чем больше ток, тем быстрее происходит разогрев биметалической пластины и время срабатывания, соответственно уменьшается.Такая характеристика в большинстве случаев является предпочтительной. Поэтому из-за простоты конструкции и надежности в работе, тепловые ТР, как и реле электромагнитного типа, получили очень широкое распространение.Трёхполюсные тепловые ТР, совместно с электромагнитными пускателями, применяются, чаще всего для защиты электродвигателей. Они имеют регулировку тока срабатывания (в пределах +/- 5-10%) кнопку возврата.Реле упомянутых типов совместно применяются и в , используемых как в быту, так и в промышленности. В корпусе автоматического выключателя размещается электромагнитное реле максимального тока для защиты от коротких замыканий и тепловое ТР для защиты от перегрузок.При установке управляющего флажка автомата в положение «включено», замыкаются контакты, включающие электрическую цепь, взводится пружина и срабатывает фиксатор, удерживающий это положение. Срабатывание любого токового реле приводит к освобождению фиксатора и под действием возвратной пружины контакты автоматического выключателя размыкаются (состояние «выключено»).Электронные ТР используется для мгновенного или с минимальной задержкой отключения оборудования при перегрузке по току. Электронная схема реле обрабатывает сигнал в соответствии с заданными характеристиками. Как правило, можно установить максимально допустимый ток и необходимое время задержки отключения при перегрузке.Кроме того, возможно и полное отключение функции контроля при пуске оборудования на некоторое время, во избежание ложных срабатывание из-за возникновения в цепи больших пусковых токов.Электронные ТР могут быть как переменного, так и постоянного тока. Их выходы, непосредственно управляющие нагрузкой, могут быть выполнены бесконтактными. Это могут быть тиристоры, симисторы, IGBT, МОП транзисторы, а так же их оптоэлектронные аналоги.ТР может входить в состав некоторых устройств (бесконтактных пускателей, регуляторов мощности и т.п.). Так, в аналоговых электроприводах это часть схемы, а в цифровых электроприводах это функция программы управления. Параметры защиты по току задаются в настройках устройства.

    Назначение и принцип работы реле времени

    Реле времени имеет элементарное назначение – включение или выключение линии фазового проводника с течением заданного промежутка времени. То есть человек настраивает реле на время работы, через которое оно должно разомкнуть электрическую цепь и уходит.

    По истечению времени реле размыкает цепь, вследствие чего отключается прибор, который подключен к линии, управляемой данным реле. Это может быть произведено с целью экономии электроэнергии и вместе с тем за ненадобностью работы прибора после определенного периода его работы.

    В общем, назначение данного прибора управления электропитанием ясно, осталось лишь разобраться с его принципом работы и рассмотреть схему, приведенную ниже.

    Принцип работы реле времени состоит в том, что блок управления реле представляет собой электронный таймер, настраиваемый вручную и который с истечением заданного времени дает сигнал исполнительному механизму, который и размыкает цепь. При этом стоит заметить, что таймер может быть электронным (что чаще всего встречается в современных реле времени) или механическим (в большей степени старого образца реле).

    Электронный таймер в реле времени представлен как микросхема, которая программируется разными импульсами, которые возникают в результате нажатия клавиш на панели управления реле контроля времени.

    Работа реле времени с таймером механического образца ничем не отличается, а сам механизм таймера такого реле имеет контакты, которые находятся в определенном положении (сомкнуты или разомкнуты). При повороте регулятора механизма таймера времени они меняют свое положение, то бишь размыкаются или мыкаются, тем самым, соответственно, замыкая или размыкая электрическую цепь.

    Со временем они становятся в первоначальную позицию, время зависит от того, на сколько градусов выполнен поворот регулятора (чем больше повернуть регулятор, тем больше нужно будет времени для возвращения в первоначальную позицию).

    Схема подключения реле времени может иметь выход для подключения к компьютеру, в таком случае это реле называется интеллектуальным и может иметь до 40 групп для подключения приборов.

    Это может давать расширенные возможности по программированию режимов времени, чего нельзя было добиться вручную, орудуя лишь парой кнопок и имея в наличии всего пару выходов групп на панели управления данным устройством автоматического управления цепью.

    В этой статье мы рассмотрели основные виды реле, которые применяются в бытовых электросетях. Были вкратце раскрыты основные положения относительно принципа работы реле, а также схемы их подключения. Однако, не были рассмотрены многие технические подробности, так как статья и без того объемная.

    Особенности подключения

    С этой работой может справиться практически каждый домашний мастер. Чтобы прибор начал функционировать, на входные клеммы достаточно подать питающее напряжение, соблюдая полярность. В качестве примера можно рассмотреть подключение твердотельного реле к системе освещения:

    • В точке монтажа ТТР нужно сделать разрыв фазного проводника.
    • Устройство подключается в разрыв клеммами для коммутации.
    • На управляющие контакты в соответствии с полярностью подается питающее напряжение.

    Следует обратить внимание на то, что управляющая цепь подключается через пусковую кнопку. Достаточно кратковременной подачи напряжения для открытия полупроводникового элемента конструкции и последующего замыкания цепи

    Чаще всего твердотельные реле монтируются на DIN-линейку.

    При выборе прибора необходимо ориентироваться технические характеристики цепи питания, а также условия эксплуатации реле. Подключение ТТР к цепи не должно вызвать серьезных проблем.

    Основные рабочие характеристики

    Промышленное реле на 24В

    Итак, реле переменного тока является промежуточным элементом, который приводит в действие управляемую электрическую цепь.

    Для этого устройства характерны следующие параметры:

    • Мощность срабатывания (Р ср – измеряется в Ваттах) – ток минимальной мощности, который должен подаваться на реле для его нормальной активации. Номинально этот параметр подбирается согласно общим конструктивным и электрическим параметрам реле.
    • Мощность управления (Р упр – измеряется в Ваттах) – максимальная мощность тока, которую способно передать реле в коммутируемой сети. Данное значение определяется параметрами рабочих контактов реле.

    Совет! Не сложно догадаться, что при выборе реле для сети ориентируются на названные параметры, которые для определенных конструкций являются постоянными.

    • Время срабатывания (Т ср – измеряется в секундах) – разница во времени от момента поступления сигнала на управляющий контакт до смыкания или размыкания контактов.
    • Допустимая разрывная мощность (Р р – измеряется в Ваттах) – этот параметр можно встретить в сильноточных реле. Он обозначает мощность при определенном токе, которая при разрыве не позволит создать устойчивую электрическую дугу.

    Как работает реле

    Диаграмма работы реле во времени

    Для управляющей цепи и самого реле характерна некоторая инертность, из-за чего входной ток на реле растет и убывает не мгновенно, а изменяется в некоторых пределах в течение времени, что прекрасно видно на показанной выше схеме, из которой так же понятно, что рабочий цикл состоит из трех этапов:

    Давайте в качестве примера, для понимания основных принципов возьмем электромагнитное реле постоянного тока.

    Назад в будущее: реле из 1983 года

    • Внутри такого реле имеется катушка индуктивности, благодаря которой и происходит постепенное изменение параметров тока. Сама же работа реле для каждого этапа складывается из определенных временных отрезков.
    • Срабатывание – имеет два таких интервала: время трогания (tтр) и время на движение якоря(tдв). То есть Т ср = tтр+tдв – все просто.
    • Работа – также два участка, которые обозначены на временной линии отрезками АВ и ВС. На первом этапе ток продолжает еще какое-то время расти, пока не будет достигнуто установленное значение, что позволяет обеспечить надежное притяжение между якорем и сердечником, препятствующим вибрации якоря. На втором участке никаких изменений величины тока не происходит.
    • Возврат – аналогично, 2 участка. На первом происходит отпускание реле, а на втором – возврат в исходное состояние. На протяжении всего периода сила тока падает.

    Трехфазное реле переменного тока

    Прочие характеристики

    Помимо перечисленного, у реле разных типов в ходу следующие параметры:

      Коэффициент возврата (Kb) – отношение отпускающего тока к срабатывающему. Обычно данное значение варьируется от 0,4 до 0,8. Рассчитывается по формуле: Iот/Iср Полезное видео по теме

    Устройство и принцип функционирования токового реле для эффективной защиты электродвигателя на примере устройства РТТ 32П:

    Правильная защита от перегрузки и обрыва фаз – залог длительной безотказной работы электрического мотора. Видео о том, как реагирует релейный элемент в случае нештатной работы механизма:

    Как подсоединить устройство тепловой защиты к МП, принципиальные схемы электротеплового реле:

    Реле тепловой защиты от перегрузок – обязательный функциональный элемент любой системы управления электроприводом. Оно реагирует на ток, который проходит на двигатель, и активируется, когда температура электромеханической установки достигает предельных значений. Это дает возможность максимально продлить срок эксплуатации экологически безопасных электродвигателей.

    Ошибки, которые допускаются при монтаже и эксплуатации РМТ

    • В условиях высокогорья электромагнитные конструкции могут давать сбои в работе. Это связано с изменением атмосферного давления. Внимательно смотрите характеристики, обычно допускается эксплуатация до 2000м над уровнем моря. В авиационной технике этот фактор обязательно учитывается.
    • На конструкциях с большим количеством коммутационных контактов пластины расположены, очень близко друг к другу. Поэтому припайке обязательно надевайте изолирующий кембрик или термоусадочную трубку. Особенно если реле используется в условиях вибрации, это исключит возможного замыкания.

    Пример качественной изоляции контактов на реле

    Бесконтактные и поляризованные агрегаты

    Также разрабатываются поляризованные бесконтактные переключатели. Они представляют собой электронные устройства, идентичные поляризованным электромагнитным установкам по функциональности, но собранные совсем по другому принципу. Это полупроводниковые электронные образцы, разработанные по технологии магнитных усилителей. Подобные агрегаты великолепно проявляют себя в условиях мощных ударов, вибраций.

    Приборы собираются по принципу магнитных усилителей и имеют несколько обмоток. Реактивное сопротивление отрицательным или положительным полуволнам на вторичной обмотке изменяется при подмагничивании сердечников постоянным напряжением определенного направления. Зачастую обыкновенным неполяризованным устройством усиливается изменение вторичного напряжения.

    Схема устройства электромагнитного реле

    Схема устройства реле такова. Подвижный стальной якорь находится внутри статичной катушки индуктивности, при подаче напряжения на которую возникает электромагнитное поле, притягивающее якорь. Различной электроникой или механикой регулируется частота и продолжительность подачи напряжения на обмотку. Частота импульсов составляет до 3600 в час.

    Более старое устройство мгновенного действия

    Структура электромагнитного реле делится на три составных элемента:

    1. Первичный. Преобразует импульс, поступающий с системы управления в электромагнитную силу. Иными словами – обмотка катушки индуктивности.
    2. Промежуточный. Состоит из различных деталей. Его задача – приведение в работу самого исполнительного механизма. Проще говоря – это якорь или иной подвижный элемент, оснащенный возвратной пружиной и контактами.
    3. Исполнительный. Выполняет работу по передаче воздействия на силовое оборудование. Эту роль играет контактная группа силовой части.

    Такие устройства устанавливаются вместе с остальной автоматикой в распределительном щите

    История создания

    Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830-1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

    Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

    Первое реле Дж. Генри

    Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

    Первое реле Морзе

    Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

    Нов-электро

    Профессиональный сайт для энергетиков

    Проверка, регулировка и настройка тепловых реле типа ТРН, ТРП

    Очень часто приходится встречать в электрохозяйствах в качестве максимальной токовой защиты электротепловые реле типов ТРН, ТРП. Подробно об этих реле я уже писал ранее. Однако, в данных реле необходимо периодически проводить настройку и регулировку уставок срабатывания. Именно об этом сегодня и поговорим.

    Перед проверкой и регулировкой тепловых реле необходимо:

    – произвести ревизию тепловых реле;

    – создать необходимые температурные условия (не ниже +20 о С) в помещении, где они установлены. В случае невозможности создания нормальных температурных условий в помещении, где установлены тепловые реле, проверку данных реле необходимо проводить в лабораторных условиях.

    Произвести внешний осмотр тепловых реле. При осмотре проверяют:

    1) надежность затяжки контактов, присоединения тепловых элементов;

    2) исправное состояние нагревательных элементов, состояние биметаллических пластин;

    3) четкость работы механизма, связанного с контактами реле и самих контактов, отсутствие заеданий, задержек;

    4) чистоту контактов и биметаллических пластин, условия охлаждения реле;

    5) отсутствие вблизи реле реостатов, нагревательных приборов, возможность обдувания от вентиляторов.

    При регулировке необходимо учитывать, что тепловые элементы на заводе изготовителе калибруются при температуре 20 о ± 5 о С для тепловых реле серии ТРН и при температуре 40 о С для тепловых реле серии ТРП, поэтому при испытании реле необходимо скорректировать подаваемый на реле номинальный ток с учетом окружающей температуры.

    Реле серии ТРН – двухполюсные с температурной компенсацией, выпускаются на ток 0,32 – 40 А с регулятором тока уставки; для реле типа ТРН-10а в пределах от –20 до +25%, для реле ТРН-10, ТРН-25 – в пределах от –25 до +30%.

    Реле имеют только ручной возврат, осуществляемый нажатием на кнопку через 1 – 2 мин. после срабатывания реле. Благодаря температурной компенсации ток уставки практически не зависит от температуры воздуха и может изменяться в пределах +3% на каждые 10 о С изменения температуры окружающего воздуха от +20 о С.

    Реле серии ТРП – однофазные, без температурной компенсации, выпускаются на ток 1-600 А, с регулятором тока уставки. Механизм имеет шкалу, на которой нанесено по пять делений в обе стороны от нуля.

    Цена деления 5% для открытого исполнения и 5,5% – для защищенного. При температуре окружающей среды +30 о С вносится поправка в пределах шкалы реле: одно деление шкалы соответствует изменению температуры на 10 о С. При отрицательных температурах стабильность защиты нарушается.

    Деление шкалы, соответствующее току защищаемого электродвигателя и окружающей температуре, выбирают следующим образом; определяется деление шкалы уставок тока без температурной поправки по выражению:

    где: Iэл – номинальный ток электродвигателя, А;

    Io – ток нулевой уставки реле, А;

    с – цена деления, равная 0,05 для открытых пускателей и 0,055 – для защищенных.

    Затем, для реле без температурной компенсации вводится поправка на окружающую температуру:

    где: tокр – температура окружающей среды, о С.

    Поправка на температуру вводится только при понижении температуры от номинальной (+40 о С) на величину более 10 о С.

    Результирующее расчетное деление шкалы ±N=(±N1)+(±N2), если оказывается дробным числом, его следует округлить до целого в большую или меньшую сторону, в зависимости от характера нагрузки.

    Для реле с температурной компенсацией N2 отсутствует.

    Самовозврат реле осуществляется пружиной после остывания биметалла или вручную (ускоренный возврат) рычагом с кнопкой.

    Согласно требованиям ГОСТов настройка тепловых реле серии ТРН и ТРП производиться следующим образом:

    1. Для включения реле в главную цепь должны применяться медные или алюминиевые проводники длиной не менее 1,5 м с сечением, соответствующим номинальному току. Применяемые приборы должны быть классом не ниже 1,0 и подбираются так, чтобы значение измеряемой величины находилось в пределах от 20 до 35 о шкалы прибора.

    2. Проверяют срабатывание реле при нагреве с холодного состояния при 6-и кратном номинальном токе уставки теплового реле.

    Время срабатывания реле при нагреве с холодного состояния 6-и кратным номинальному току несрабатывания реле, при любом положении регулятора уставки и температуре окружающего воздуха, равной 40 о С – для реле без температурной компенсации и 20 о С – для реле с температурной компенсацией должно быть в пределах: от 0,5 до 4 секунд – для реле малой инертности, свыше 4 до 25 секунд – для реле большой инерционности.

    Примечание:

    Время срабатывания реле (каждого типа) должно указываться в стандартах или ТУ на данное изделие.

    3. Через последовательно включенные полюса реле пропускают ток несрабатывания элементов, равный 1,05*Iном. двигателя в течении 40 минут для реле ТРН, 50 минут – для реле серии ТРП, для приведения реле в установившееся тепловое состояние.

    4. Затем, ток повышают до 1,2Iном двигателя и проверяют время срабатывания. Реле должно сработать в течении 20 минут. Если через 20 минут со времени повышения тока реле не сработает, то следует постепенным снижением уставки найти такой положение, при котором реле сработает.

    Для контроля полученной уставки испытание рекомендуется повторить.

    Сдача тепловых реле после проверки.

    Данные настройки должны заноситься в протокол с указанием:

    – технические данные защищаемого оборудования;

    – кратность тока прогрузки;

    – время срабатывания теплового реле.

    На механизме регулировки тока уставки наносится красной краской метка, соответствующая рабочей уставке теплового реле, согласно вышеуказанного протокола.

    Добавить комментарий